Advertisement

Journal of Electronic Materials

, Volume 42, Issue 7, pp 2381–2387 | Cite as

Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

  • A. Stranz
  • J. Kähler
  • A. Waag
  • E. Peiner
Article

Abstract

Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

Keywords

Silicon thermoelectric material properties Seebeck coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Energy Agency (IEA), World Energy Outlook, 1st edn. (OECD/IEA, Paris, 2011), pp. 1–659Google Scholar
  2. 2.
    C. Drasar and E. Müller, Mater. Sci. Forum 492–493, 273–280 (2005).CrossRefGoogle Scholar
  3. 3.
    T.C. Harman, M.P. Walsh, B.E. Laforge, and G.W. Turner, J. Electron. Mater. 34, 19–22 (2005).CrossRefGoogle Scholar
  4. 4.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Stranz, Ü. Sökmen, J. Kähler, A. Waag, and E. Peiner, Sensors Actuators A 171, 48–53 (2011).Google Scholar
  6. 6.
    D.M. Rowe, Thermoelectric Handbook: Micro to Nano (Boca Raton, FL: CRC Press, 2006), p. 22-6.Google Scholar
  7. 7.
    F. Bernhard, Technische Temperaturmessung (Berlin: Springer, 2004), p. 1264.CrossRefGoogle Scholar
  8. 8.
    T.H. Geballe and G.W. Hull, Phys. Rev. 98, 940–947 (1955).CrossRefGoogle Scholar
  9. 9.
    N.F. Hinsche, I. Mertig, and P. Zahn, J. Phys. Condens. Matter 23, 295502 (2011).Google Scholar
  10. 10.
    A. Cezairliyan, K.D. Maglic, and V.E. Peletsky, Compendium of Thermophysical Property Measurement Methods 2: Recommended Measurement Techniques and Practices, 1st ed. (New York: Springer, 1992), pp. 1–661.Google Scholar
  11. 11.
    C.J. Glassbrenner and G.A. Slack, Phys. Rev. 134, 1058–1069 (1964).CrossRefGoogle Scholar
  12. 12.
    W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, and D.L. McElroy, Phys. Rev. 167, 765–782 (1968).CrossRefGoogle Scholar
  13. 13.
    D.T. Morelli, J.P. Heremans, and G.A. Slack, Phys. Rev. B 66, 195304 (2002).CrossRefGoogle Scholar
  14. 14.
    M.E. Brinson and W. Dunstan, J. Phys. C Solid State Phys. 3, 483 (1970).CrossRefGoogle Scholar
  15. 15.
    A. Glen and J. Slack, Appl. Phys. 35, 3460–3466 (1964).CrossRefGoogle Scholar
  16. 16.
    D.K. Schroeder, Semiconductor Material and Device Characterization, 3rd ed. (New Jersey: Wiley-Interscience, 2006), pp. 1–779.Google Scholar
  17. 17.
    G.L. Pearson and J. Bardeen, Phys. Rev. 75, 865–883 (1949).CrossRefGoogle Scholar
  18. 18.
    F.J. Morin and J.P. Maita, Phys. Rev. 96, 28–35 (1954).CrossRefGoogle Scholar
  19. 19.
    F. Mancarella, A. Roncaglia, and G.C. Cardinali, Sensors Actuators A 132, 289–295 (2006).CrossRefGoogle Scholar
  20. 20.
    J. Xie, C. Lee, M.-F. Wang, Y. Liu, and H. Feng, J. Micromech. Microeng. 19, 125029 (2009).CrossRefGoogle Scholar
  21. 21.
    M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturmc, M. Franosch, and G. Wachutka, Sensors Actuators A 114, 362–370 (2004).CrossRefGoogle Scholar
  22. 22.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19–25 (2012).CrossRefGoogle Scholar
  23. 23.
    L. Weber and E. Gmelin, Appl. Phys. A 53, 136–140 (1991).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Institute of Semiconductor TechnologyTU Braunschweig University of Technology BraunschweigGermany

Personalised recommendations