Journal of Electronic Materials

, Volume 42, Issue 7, pp 2014–2019 | Cite as

Chemical Stability of (Ag,Cu)2Se: a Historical Overview

  • David R. Brown
  • Tristan Day
  • Thierry Caillat
  • G. JeffREY Snyder


Recent work on Cu2−x Se has caused strong interest in this material due to its high reported peak zT (1.5) and the reduction of thermal conductivity through the mechanism of liquid-like suppression of heat capacity. In the 1960s, 3M patented Cu1.97Ag0.03Se as “TPM-217.” Over the following decade it was tested and developed by the 3M Corporation, at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, Teledyne Energy Systems, and the General Atomics Corporation for use as a next-generation thermoelectric material. During these tests, extreme problems with material loss through Se vaporization and chemical reactions between the material and the device contacts were found. These problems were especially severe while operating under conditions of high \( iL/A. \) As a result, the material system was abandoned. The results of these reports are discussed. A simple test of degradation of Cu2Se under conditions of applied current and thermal gradient was performed and showed results compatible with the work done by General Atomics.


Contact Resistance General Atomic Thermoelectric Generator Thermoelectric Module Excess Selenium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Horvatic and Z. Vucic, Solid State Ionics 61, 117 (1984).CrossRefGoogle Scholar
  2. 2.
    V.A. Chatov, T.P. Iorga, and P.N. Inglizyan, Sov. Phys. Semicond. 14, 474 (1980).Google Scholar
  3. 3.
    J.B. Boyce and B.A. Huberman, Phys. Rep. 51, 189 (1979).CrossRefGoogle Scholar
  4. 4.
    K. Trachenko, Phys. Rev. B 78, 104201 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. 11, 422 (2012).CrossRefGoogle Scholar
  6. 6.
    E.F.J. Hampl, Thermoelectric materials evaluation program. Quarterly technical task report No. 39 (Report No. MMM–2473-3421972) (DOE, 1972) doi:  10.2172/4562245.
  7. 7.
    E.F.J. Hampl, Thermoelectric materials evaluation program. Quarterly technical task report No. 46. [Minnesota Mining and Manufacturing Company, Technical Ceramic Products Div., St. Paul, 10/1 to 12/31/1975], (Report No. MMM-2473-0422) (DOE, 1976) doi:  10.2172/5311720.
  8. 8.
    E.F.J. Hampl, J.D. Hinderman, W.C. Mitchell, R.S. Reylek, and D.A. Wald, IEEE Trans. Aerosp. Electron. Syst. 11, 952 (1975).Google Scholar
  9. 9.
    J.D. Hinderman, Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979 (Report No. MMM-2331-0642) (DOE, 1979) doi:  10.2172/5741759.
  10. 10.
    J.D. Hinderman, Thermoelectric materials evaluation program. Technical summary report. (Report No. MMM-2331-0602) (DOE, 1979) doi:  10.2172/5434752.
  11. 11.
    3M Corporation. Program to design an advanced technology thermoelectric module for a 2 KW power system and to fabricate and test a heat pipe/thermoelectric module (Report No. TID/SNM—27) (DOE, 1970) doi:  10.2172/4209954.
  12. 12.
    J.D. Hinderman, SIG Galileo final converter. Technical summary report. (Report No. DOE/ET/33008-1) (DOE 1979).Google Scholar
  13. 13.
    N.B. Elsner, J. Chin and H.G. Staley, Radioisotope space power generator annual report, July 1, 1974June 30, 1975. [TPM-217 P-type material and SiGe technology] (Report No. GA-A-140161976) (DOE, 1975) doi:  10.2172/4178631.
  14. 14.
    N.B. Elsner, J. Chin, H.G. Staley, J.C. Bass, E.J. Steeger, P.K. Gantzel and J.M. Neill, Radioisotope space power generator annual report for the period October 1, 1976-September 30, 1978, (Report No. GA-A-15683) (DOE, 1980) doi:  10.2172/6891182.
  15. 15.
    N.B. Elsner, J. Chin, G.H. Reynolds, J.H. Norman, J.C. Bass, H.G. Staley, Isotec Final Report (Report No. GA-A-16584) (DOE, 1981) doi:  10.2172/5437033.
  16. 16.
    N.B. Elsner and J. Chin, Radioisotope space power generator. Annual report for the period July 1, 1973June 30, 1974 (Report no. GA-A—13426) (DOE, 1975) doi:  10.2172/4178631
  17. 17.
    G. Stapfer and L. Garvey, Progress report No. 29 for a program of thermoelectric generator testing and RTG degradation mechanisms evaluation (Report no. DOE/ET/33003-T2) (DOE, 1979) doi:  10.2172/6210722.
  18. 18.
    G. Stapfer and V.C. Truscello, Development of the data base for a degradation model of a selenide RTG (Report no. 19770066000) (NASA JPL, 1977).Google Scholar
  19. 19.
    G. Stapfer, Copper-selenide system, P-Type TPM-217 (Report no. DOE/ET/33003-T5) (DOE, 1977).Google Scholar
  20. 20.
    A. Lockwood and G. Stapfer, Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 33 (Report no. SAN-0959-T2) (DOE, 1979) doi:  10.2172/5531078.
  21. 21.
    Teledyne Energy Systems, Selenide isotope generator for the Galileo Mission. Program final report (Report no. TES-33009-46) (DOE, 1979) doi:  10.2172/5928964.
  22. 22.
    Z. Vučić, O. Milat, V. Horvatić, and Z. Ogorelec, Phys. Rev. B 24, 5398 (1981).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • David R. Brown
    • 1
  • Tristan Day
    • 1
  • Thierry Caillat
    • 2
  • G. JeffREY Snyder
    • 1
  1. 1.Department of Applied Physics and Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion Laboratory/California Institute of TechnologyPasadenaUSA

Personalised recommendations