Advertisement

Journal of Electronic Materials

, Volume 42, Issue 7, pp 2376–2380 | Cite as

Thermal Conductivity Measurement Methods for SiGe Thermoelectric Materials

  • L. Ferre Llin
  • A. Samarelli
  • Y. Zhang
  • J. M. R. Weaver
  • P. Dobson
  • S. Cecchi
  • D. Chrastina
  • G. Isella
  • T. Etzelstorfer
  • J. Stangl
  • E. Muller Gubler
  • D. J. Paul
Article

Abstract

A new technique to measure the thermal conductivity of thermoelectric materials at the microscale has been developed. The structure allows the electrical conductivity, thermal conductivity, and Seebeck coefficient to be measured on a single device. The thermal conductivity is particularly difficult to measure since it requires precise estimation of the heat flux injected into the material. The new technique is based on a differential method where the parasitic contributions of the supporting beams of a Hall bar are removed. The thermal measurements with integrated platinum thermometers on the device are cross-checked using thermal atomic force microscopy and validated by finite-element analysis simulations.

Keywords

Silicon germanium thermal conductivity thermoelectrics heterostructure device fabrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.G. Cahill, Rev. Sci. Instrument. 61, 802 (1990).CrossRefGoogle Scholar
  2. 2.
    D.G. Cahill et al., J. Vac. Sci. Technol. A 7, 1259 (1989).CrossRefGoogle Scholar
  3. 3.
    B. Yang et al., APL 81, 1758 (2002).Google Scholar
  4. 4.
    W.L. Liu, J. Nanosci. NanoTechnol. 1, 39(2001).CrossRefGoogle Scholar
  5. 5.
    T. Borca-Tasciuc, Rev. Sci. Instrum. 72, 2139 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Samarelli, et al., J. Electr. Mater., (2012) doi: 10.1007/s11664-012-2287-z.
  7. 7.
    D.J. Paul et al., Proc. Electrochem. Soc. 50, 959 (2012).Google Scholar
  8. 8.
    J.R. Watling et al., J. Appl. Phys. 110, 114508 (2011).CrossRefGoogle Scholar
  9. 9.
    G. Isella et al., Solid State Electron. 48, 1317 (2004).CrossRefGoogle Scholar
  10. 10.
    S.C. Cecchi et al., J. Mater. Sci. doi: 10.1007/s10853-01206825-0 (2012).
  11. 11.
    K. Gallacher, P. Velha, D.J. Paul, I. MacLaren, M. Myranov, D.R. Leadley, Appl. Phys. Lett. 110, 022113 (2012).CrossRefGoogle Scholar
  12. 12.
    P.S. Dobson et al., Rev. Sci. Instrum. 76, 054901 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • L. Ferre Llin
    • 1
  • A. Samarelli
    • 1
  • Y. Zhang
    • 1
  • J. M. R. Weaver
    • 1
  • P. Dobson
    • 1
  • S. Cecchi
    • 2
  • D. Chrastina
    • 2
  • G. Isella
    • 2
  • T. Etzelstorfer
    • 3
  • J. Stangl
    • 3
  • E. Muller Gubler
    • 4
  • D. J. Paul
    • 1
  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK
  2. 2.L-NESS, Politecnico di MilanoComoItaly
  3. 3.Johannes Kepler UniversittLinzAustria
  4. 4.ETH ZurichZurichSwitzerland

Personalised recommendations