Journal of Electronic Materials

, Volume 42, Issue 5, pp 894–900 | Cite as

A Comparison of ZnO Nanowires and Nanorods Grown Using MOCVD and Hydrothermal Processes

  • Abdiel Rivera
  • John Zeller
  • Ashok Sood
  • Mehdi Anwar


A comparison of ZnO nanowires (NWs) and nanorods (NRs) grown using metalorganic chemical vapor deposition (MOCVD) and hydrothermal synthesis, respectively, on p-Si (100), GaN/sapphire, and SiO2 substrates is reported. Scanning electron microscopy (SEM) images reveal that ZnO NWs grown using MOCVD had diameters varying from 20 nm to 150 nm and approximate lengths ranging from 0.7 μm to 2 μm. The NWs exhibited clean termination/tips in the absence of any secondary nucleation. The NRs grown using the hydrothermal method had diameters varying between 200 nm and 350 nm with approximate lengths between 0.7 μm and 1 μm. However, the NRs grown on p-Si overlapped with each other and showed secondary nucleation. x-Ray diffraction (XRD) of (0002)-oriented ZnO NWs grown on GaN using MOCVD demonstrated a full-width at half-maximum (FWHM) of 0.0498 (θ) compared with 0.052 (θ) for ZnO NRs grown on similar substrates using hydrothermal synthesis, showing better crystal quality. Similar crystal quality was observed for NWs grown on p-Si and SiO2 substrates. Photoluminescence (PL) of the NWs grown on p-Si and SiO2 showed a single absorption peak attributed to exciton–exciton recombination. ZnO NWs grown on GaN/sapphire had defects associated with oxygen interstitials and oxygen vacancies.


ZnO nanowires nanorods MOCVD hydrothermal photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.K. Sood, Z.L. Wang, D.L. Polla, N.K. Dar, T. Manzur, and A.F.M. Anwar, Optoelectronic Devices and Properties, ed. O. Sergiyenko (Rijeka, Croatia; In Tech, 2011), pp. 173–195.Google Scholar
  2. 2.
    H.C. Chou, A. Mazady, A. Rivera, and M. Anwar, Electronic Materials Conference, University Park, PA, USA, Jun. 20–22 (2012).Google Scholar
  3. 3.
    Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110–113 (2001).CrossRefGoogle Scholar
  5. 5.
    A. Rivera, A. Mazady, H.C. Chou, and M. Anwar, Lester Eastman Conference on High Performance Devices, Providence, RI, USA, Aug. 7–9 (2012).Google Scholar
  6. 6.
    C.H. Lee, G.C. Yi, V.M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 22106 (2009).CrossRefGoogle Scholar
  7. 7.
    J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, and Z.L. Dong, Appl. Phys. Lett. 88, 233106 (2006).CrossRefGoogle Scholar
  8. 8.
    Y.W. Heo, V. Varadarjan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, and P.H. Fleming, Appl. Phys. Lett. 81, 3046–3048 (2002).CrossRefGoogle Scholar
  9. 9.
    F. Falyouni, L. Benmamas, C. Thiandome, J. Barjon, A. Lusson, P. Galter, and V. Sallet, J. Vac. Sci. Technol. B 87, 1662 (2009).CrossRefGoogle Scholar
  10. 10.
    M.C. Jeong, B.Y. Oh, W. Lee, and J.M. Myoung, J. Cryst. Growth 268, 149–154 (2004).CrossRefGoogle Scholar
  11. 11.
    S.W. Kim and S. Fujita, Appl. Phys. Lett. 86, 153119 (2005).CrossRefGoogle Scholar
  12. 12.
    W. Lee, M.C. Jeong, and J.M. Myoung, Acta Mater. 52, 3949–3957 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Black, A.C. Jones, I. Alexandrou, P.N. Heys, and P.R. Chauker, Nanotechnology 21, 045701 (2010).CrossRefGoogle Scholar
  14. 14.
    J.P. Kar, S.W. Lee, W. Lee, and J.M. Myoung, Appl. Surf. Sci. 254, 6677–6682 (2008).CrossRefGoogle Scholar
  15. 15.
    L. Vayssieres, Adv. Mater. 15, 464 (2003).CrossRefGoogle Scholar
  16. 16.
    S.N. Bai, J. Mater. Sci. Mater. Electron. 23, 398–402 (2012).CrossRefGoogle Scholar
  17. 17.
    P.Y. Yang, J.L. Wang, W.C. Tsai, S.J. Wang, J.C. Lin, I.C. Lee, C.T. Chang, and H.C. Cheng, Thin Solid Films 518, 7328–7332 (2010).CrossRefGoogle Scholar
  18. 18.
    J.H. Tian, J. Hu, S.S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z.Q. Tian, and Y. Chen, Nanotechnology 22, 245601 (2011).CrossRefGoogle Scholar
  19. 19.
    P.X. Gao, J. Song, J. Liu, and Z.L. Wang, Adv. Mater. 19, 67–72 (2007).CrossRefGoogle Scholar
  20. 20.
    L.H. Quang, S.J. Chua, K.P. Loh, and E. Fitzgerald, J. Cryst. Growth 287, 157–161 (2006).CrossRefGoogle Scholar
  21. 21.
    H. Dumont, A. Marbeuf, J.E. Bouree, and O. Gorochov, J. Mater. Chem. 2, 923 (1992).CrossRefGoogle Scholar
  22. 22.
    C. Thiandoume, V. Sallet, R. Triboulet, and O. Gorochov, J. Cryst. Growth 311, 1411–1415 (2009).CrossRefGoogle Scholar
  23. 23.
    B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, and Y. Segawa, Thin Solid Films 449, 12–19 (2004).CrossRefGoogle Scholar
  24. 24.
    C.K. Lau, S.K. Tiku, and K.M. Lakin, J. Electrochem. Soc. 127, 1845 (1980).CrossRefGoogle Scholar
  25. 25.
    D. Chu, T. Hamada, K. Kato, and Y. Masuda, Phys. Status Solidi A 206, 718–723 (2009).CrossRefGoogle Scholar
  26. 26.
    P. Shimpi, P.X. Gao, D.G. Goberman, and Y. Ding, Nanotechnology 20, 125608 (2009).CrossRefGoogle Scholar
  27. 27.
    C.H. Chen, S.J. Chang, S.P. Chang, M.J. Li, and I.C. Chen, et al., Appl. Phys. Lett. 95, 223101 (2009).CrossRefGoogle Scholar
  28. 28.
    D.C. Kim, B.H. Kong, H.K. Cho, D.J. Park, and J.Y. Lee, Nanotechnology 18, 015603 (2007).CrossRefGoogle Scholar
  29. 29.
    M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, and Y. Sun, Thin Solid Films 515, 8679–8683 (2007).CrossRefGoogle Scholar
  30. 30.
    H.Q. Le, S.J. Chua, Y.W. Koh, K.P. Loh, and E.A. Fitzgerald, J. Cryst. Growth 293, 36–42 (2006).CrossRefGoogle Scholar
  31. 31.
    D.J. Lee, J.Y. Park, Y.S. Yun, S. Hong, J.H. Moon, and B.T. Lee, et al., J. Cryst. Growth 276, 458 (2005).CrossRefGoogle Scholar
  32. 32.
    B.D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley Metallurgy Series (1956), p. 310.Google Scholar
  33. 33.
    F.C. Tsao, J.Y. Chen, C.H. Kuo, G.C. Chi, and C.J. Pan, Appl. Phys. Lett. 92, 203110 (2008).CrossRefGoogle Scholar
  34. 34.
    M.E. Fragala, Y. Aleeva, and G. Malandrino, Thin Solid Films 519, 7694–7701 (2011).CrossRefGoogle Scholar
  35. 35.
    B. Ha, H. Ham, and C.J. Lee, J. Phys. Chem. Solids 69, 2453–2456 (2008).CrossRefGoogle Scholar
  36. 36.
    J.H. Zeng, Y.L. Yu, Y.F. Wang, and T.J. Lou, Acta Mater. 57, 1813 (2009).CrossRefGoogle Scholar
  37. 37.
    J.B. Baxter and E.S. Aydil, J. Electrochem. Soc. 156, H52–H58 (2009).CrossRefGoogle Scholar
  38. 38.
    B. Ha, H. Ham, and C.J. Lee, J. Phys. Chem. Solids 69, 2453–2456 (2008).CrossRefGoogle Scholar
  39. 39.
    A.B. Djurisic, A.M.C. Ng, and X.Y. Chen, Prog. Quant. Electron. 34, 191–259 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Abdiel Rivera
    • 1
  • John Zeller
    • 2
  • Ashok Sood
    • 2
  • Mehdi Anwar
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Magnolia Optical TechnologiesWoburnUSA

Personalised recommendations