Journal of Electronic Materials

, Volume 42, Issue 7, pp 1330–1334 | Cite as

High-Pressure Torsion to Improve Thermoelectric Efficiency of Clathrates?

  • X. Yan
  • M. Falmbigl
  • G. Rogl
  • A. Grytsiv
  • A. Prokofiev
  • E. Bauer
  • P. Rogl
  • M. Zehetbauer
  • S. Paschen
Article

Abstract

High-pressure torsion (HPT), as a technique to produce severe plastic deformation, has been proven effective to improve the thermoelectric performance of skutterudites. In this report, we present microstructural and thermoelectric properties of the clathrate Ba8Cu3.5Ge41In1.5 processed by HPT. The sample was synthesized from high-purity elements, subsequently annealed, ball milled, and hot pressed, and finally subject to HPT. Compared with the ball-milled and hot-pressed sample, the HPT-processed sample has higher electrical resistivity and Seebeck coefficient, and lower thermal conductivity, electron concentration, and mobility, which is attributed to the reduced grain size and increased density of dislocations, point defects, and cracks. No essential improvement of the dimensionless thermoelectric figure of merit is observed in the investigated temperature range, questioning the universal versatility of this technique for improvement of thermoelectric materials.

Keywords

Thermoelectric materials clathrates high-pressure torsion thermoelectric and transport measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Slack, New Materials and Performance Limits for Thermoelectric Cooling (Boca Raton, FL: CRC, 1995)Google Scholar
  2. 2.
    G.A. Slack, Mater. Res. Soc. Symp. Proc 478, 47 (1997).CrossRefGoogle Scholar
  3. 3.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1997).CrossRefGoogle Scholar
  4. 4.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn, and R. Sharma, Phys. Rev. B 61, 3845 (2000).CrossRefGoogle Scholar
  5. 5.
    G.S. Nolas, B.C. Chakoumakos, G.J.L. B. Mathieu, and T.J.R. Weakley, Chem. Mater. 12, 1947 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bal, and B.B. Iversen, Nat. Mater. 7, 811 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99(2), 023708 (2006). DOI  10.1063/1.2163979 Google Scholar
  8. 8.
    S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Dalton Trans. 2007, 2099 (2007).CrossRefGoogle Scholar
  9. 9.
    E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).CrossRefGoogle Scholar
  10. 10.
    E. Zintl, Angew. Chem. 52, 1 (1939)CrossRefGoogle Scholar
  11. 11.
    A. Prokofiev, M. Ikeda, E. Makalkina, R. Svagera, M. Waas, and S. Paschen, J. Electron. Mater. (2012). DOI  10.1007/s11664-012-2358-1
  12. 12.
    A.J. Minnich, M.S. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, A. Grytsiv, B. Bonarski, M. Kerber, D. Setman, E. Schafler, P. Rogl, E. Bauer, G. Hilscher, and M. Zehetbauer, J. Alloy Compd. 494(1–2), 78 (2010). DOI  10.1016/j.jallcom.2010.01.042 Google Scholar
  14. 14.
    G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60(5), 2146 (2012). DOI  10.1016/j.actamat.2011.12.023 Google Scholar
  15. 15.
    G. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, O. Eibl, A. Grytsiv, E. Bauer, M. Reinecker, W. Schranz, and P. Rogl, J. Alloy Compd. (2012). DOI  10.1016/j.jallcom.2012.05.011
  16. 16.
    X. Yan, at al., unpublishedGoogle Scholar
  17. 17.
    J. Callaway, Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
  18. 18.
    J. Callaway, J. von Baeyer, Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
  19. 19.
    J. Callaway, Phys. Rev. 122, 787 (1961).CrossRefGoogle Scholar
  20. 20.
    C. Uher, Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum: New York, 2003)Google Scholar
  21. 21.
    F.J. Blatt, Physics of Electronic Conduction in Solids (New York: McGraw-Hill, 1968)Google Scholar
  22. 22.
    A.N. Gerritsen, Encyclopedia of Physics (Springer-Verlag OHG, Berlin, 1956).Google Scholar
  23. 23.
    F.J. Blatt, Proc. Phys. Soc. 83, 1065 (1964).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • X. Yan
    • 1
    • 2
  • M. Falmbigl
    • 2
  • G. Rogl
    • 2
  • A. Grytsiv
    • 2
  • A. Prokofiev
    • 1
  • E. Bauer
    • 1
  • P. Rogl
    • 2
  • M. Zehetbauer
    • 3
  • S. Paschen
    • 1
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Institute of Physical ChemistryVienna UniversityViennaAustria
  3. 3.Research Group Physics of Nanostructured MaterialsVienna UniversityViennaAustria

Personalised recommendations