Journal of Electronic Materials

, Volume 42, Issue 4, pp 752–760 | Cite as

Preparation and Study of Bismuth Rare-Earth Tungstate Composite Screen-Printed Thick Films

  • G.N. Rocha
  • L.F.L. Melo
  • S.M. Dantas
  • A.P. Ayala
  • A.S.B. Sombra
  • A.F.L. Almeida
  • A.S. de  Menezes
  • P.B.A. FechineEmail author


In this paper, we report the microstructural and dielectric properties of bismuth rare-earth tungstate composite screen-printed thick films (BiGd1−X Nd X WO6, BiGd1−X Y X WO6, and BiY1−X Nd X WO6). The crystal structure of BiREWO6 (RE = Gd, Nd, and Y) can be associated with the Bi2WO6 perovskite structure. It was observed that the crystalline structure was attributed to a monoclinic phase with space group A12/m1. BiYWO6 and BiY0.5Gd0.5WO6 films showed characteristics of the dielectric relaxation phenomenon. The thick films exhibited moderate dielectric permittivity (ε r′) values from 10 to 42. The results showed that the obtained ε r′ values for films can be useful for capacitor applications and certainly for microelectronics and microwave devices (mobile phones, for example), where miniaturization of devices is crucial.


Bismuth rare-earth tungstate dielectric measurement thick films electroceramic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Sompech, A. Srion, and A. Nuntiya, Sci. Asia 38, 102 (2012).CrossRefGoogle Scholar
  2. 2.
    A.F.L. Almeida, P.B.A. Fechine, L.C. Kretly, and A.S.B. Sombra, J. Mater. Sci. 41, 4623 (2006).CrossRefGoogle Scholar
  3. 3.
    F. Magalhães, F.C.C. Moura, J.D. Ardisson, and R.M. Lago, Mater. Res. 11, 307 (2008).Google Scholar
  4. 4.
    P.S. Berdonosov, D.O. Charkin, K.S. Knight, K.E. Johnston, R.J. Goff, V.A. Dolgikh, and P. Lightfoot, J. Solid State Chem. 179, 3437 (2006).CrossRefGoogle Scholar
  5. 5.
    N.A. McDowell, K.S. Knight, and P. Lightfoot, Chem. Eur. J. 12, 1493 (2006).CrossRefGoogle Scholar
  6. 6.
    P.S. Berdonosov, D.O. Charkin, V.A. Dolgikh, S.Y. Stefanovich, R.I. Smith, and P. Lightfoot, J. Solid State Chem. 177, 2632 (2004).CrossRefGoogle Scholar
  7. 7.
    W. Xiao-Juan, G. Zhi-Qiang, Z. Jun, and C. Xiao-Bing, Chin. Phys. B 18, 803 (2009).CrossRefGoogle Scholar
  8. 8.
    G.N. Rocha, L.F.L. Melo, M.A.S. da Silva, P.V.S. Silva, A.S.B. Sombra, and P.B.A. Fechine, Microw. Opt. Technol. Lett. 54, 18 (2012).CrossRefGoogle Scholar
  9. 9.
    N. Santha, P. Koshy, M.T. Sebastian, and R. Ratheesh, J. Mater. Sci.: Mater. Electron. 13, 229 (2002).CrossRefGoogle Scholar
  10. 10.
    Q.L. Zhao, M.S. Cao, J. Yuan, W.L. Song, R. Lu, D.W. Wang, and D.Q. Zhang, J. Alloy Compd. 492, 264 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Ran, J. Gen-Shan, L. Bin, Z. Quan-Liang, Z. De-Qing, Y. Jie, and C. Mao-Sheng, Chin. Phys. Lett. 29, 058101 (2012).CrossRefGoogle Scholar
  12. 12.
    Q.L. Zhao, M.S. Cao, J. Yuan, R. Lu, D.W. Wang, and D.Q. Zhang, Mater. Lett. 64, 632 (2010).CrossRefGoogle Scholar
  13. 13.
    R.C. Buchanan, in: Ceramic Materials for Electronics, ed. R.C. Buchanan, 2nd edn. (New York: Marcel Dekker, 1991), pp. 1–67.Google Scholar
  14. 14.
    P. B. A. Fechine, M. J. S. da Rocha, M. R. P. Santos, F. M. M. Pereira, A. S. de Menezes, J. M. A. Almeida, J. C. Góes, A. P. Ayala, and A. S. B. Sombra, J. Mater. Sci.: Mater Electron. 19, 973 (2008).Google Scholar
  15. 15.
    A.F.L. Almeida, P.B.A. Fechine, J.M. Sasaki, A.P. Ayala, J.C. Góes, D.L. Pontes, W. Margulis, and A.S.B. Sombra, Solid State Sci. 6, 267 (2004).CrossRefGoogle Scholar
  16. 16.
    P.B.A. Fechine, A. Távora, L.C. Kretly, A.F.L. Almeida, M.R.P. Santos, F.N.A. Freire, and A.S.B. Sombra, J. Electron. Mater. 35, 1848 (2006).CrossRefGoogle Scholar
  17. 17.
    A.C. Larson, and R.B.Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86, 748 (2004).Google Scholar
  18. 18.
    P. Scherrer, Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 2, 96 (1918).Google Scholar
  19. 19.
    C. Lucaty, F. Menily, and R. Von Der Mühll, Meas. Sci. Technol. 8, 38 (1997).CrossRefGoogle Scholar
  20. 20.
    M. Maczka, J. Hanuza, W. Paraguassu, A.G.S. Filho, P.T.C. Freire, and J.M. Filho, Appl. Phys. Lett. 92, 112911 (2008).CrossRefGoogle Scholar
  21. 21.
    K.C. Kao, Dielectric Phenomena in Solids, 1st edn. (London: Elsevier Academic Press, 2004), pp. 41–114.Google Scholar
  22. 22.
    P.B.A. Fehine, A.F.L. Almeida, F.N.A. Freire, M.R.P. Santos, F.M.M. Pereira, R. Jimenez, J. Mendiola, and A.S.B. Sombra, Mater. Chem. Phys. 96, 402 (2006).CrossRefGoogle Scholar
  23. 23.
    D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, K. Kishan Rao, and S. Bal Laxman, Bull. Mater. Sci. 24, 469 (2001).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • G.N. Rocha
    • 1
  • L.F.L. Melo
    • 1
  • S.M. Dantas
    • 2
  • A.P. Ayala
    • 2
  • A.S.B. Sombra
    • 3
  • A.F.L. Almeida
    • 4
  • A.S. de  Menezes
    • 5
  • P.B.A. Fechine
    • 1
    Email author
  1. 1.Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará—UFCFortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Laboratório de Telecomunicações e Ciência e Engenharia dos Materiais (LOCEM), Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de Engenharia Mecânica e de Produção (DEMP), Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil
  5. 5.Departamento de Física, CCETUniversidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations