Advertisement

Journal of Electronic Materials

, Volume 42, Issue 7, pp 2393–2401 | Cite as

Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires

  • N. Neophytou
  • X. Zianni
  • M. Ferri
  • A. Roncaglia
  • G. F. Cerofolini
  • D. Narducci
Article

Abstract

In this work we perform a theoretical analysis of the thermoelectric performance of polycrystalline Si nanowires (NWs) by considering both electron and phonon transport. The simulations are calibrated with experimental data from monocrystalline and polycrystalline structures. We show that heavily doped polycrystalline NW structures with grain size below 100 nm might offer an alternative approach to achieve simultaneous thermal conductivity reduction and power factor improvements through improvements in the Seebeck coefficient. We find that deviations from the homogeneity of the channel and/or reduction in the diameter may provide strong reduction in the thermal conductivity. Interestingly, our calculations show that the Seebeck coefficient and consequently the power factor can be improved significantly once the polycrystalline geometry is properly optimized, while avoiding strong reduction in the electrical conductivity. In such a way, ZT values even higher than the ones reported for monocrystalline Si NWs can be achieved.

Keywords

Polycrystalline silicon thermoelectrics Seebeck power factor thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard Jr., and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).CrossRefGoogle Scholar
  3. 3.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.C. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Nielsch, J. Bachmann, J. Kimling, and H. Boettner, Adv. Energy Mater. 1, 713–731 (2011).CrossRefGoogle Scholar
  5. 5.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  6. 6.
    N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).CrossRefGoogle Scholar
  7. 7.
    X. Zianni, Appl. Phys. Lett. 97, 233106 (2010).CrossRefGoogle Scholar
  8. 8.
    X. Zianni, AIP Conf. Proc. 1449, 21 (2012). doi: 10.1063/1.4731487.
  9. 9.
    X. Zianni, J. Solid State Chem. 193, 53 (2012).CrossRefGoogle Scholar
  10. 10.
    R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Narducci, E. Selezneva, G. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, MRS Symp. Proc., 2010, 1314, mrsf10-1314-ll05-16.Google Scholar
  12. 12.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).CrossRefGoogle Scholar
  13. 13.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  14. 14.
    N. Neophytou and H. Kosina, Phys. Rev. B 84, 085313 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).CrossRefGoogle Scholar
  16. 16.
    M. Lundstrom, Fundamentals of Carrier Transport (New York: Cambridge University Press, 2000).CrossRefGoogle Scholar
  17. 17.
    H. Kosina and G.K. Grujin, Solid State Electron. 42, 331 (1998).CrossRefGoogle Scholar
  18. 18.
    A.T. Ramu, L.E. Cassels, N.H. Hackman, H. Lu, J.M.O. Zide, and J.E. Bowels, J. Appl. Phys. 107, 083707 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).CrossRefGoogle Scholar
  20. 20.
    http://www.ioffe.ru/SVA/, “Physical Properties of Semiconductors”.
  21. 21.
    G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electron. Dev. 30, 764 (1983).CrossRefGoogle Scholar
  22. 22.
    P. Chantrenne, J.L. Barrat, X. Blase, and J.D. Gale, J. Appl. Phys. 97, 104318 (2005).CrossRefGoogle Scholar
  23. 23.
    J.W. Orton and M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980).CrossRefGoogle Scholar
  24. 24.
    F.V. Farmakis, J. Brini, G. Kamarinos, C.T. Angelis, C.A. Dimitriadis, and M. Miyasaka, IEEE Trans. Electron. Dev. 48, 701 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225–2230 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Jerhot and J. Vlcek, Thin Solid Films 92, 259 (1982).CrossRefGoogle Scholar
  27. 27.
    M. Lundstrom, Electron. Dev. Lett. 22, 293–295 (2001).CrossRefGoogle Scholar
  28. 28.
    D. Narducci, E. Selezneva, G. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, Proceedings of the 8th European Conference on Thermoelectrics (ECT2010) (2010), p. 141–146.Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • N. Neophytou
    • 1
  • X. Zianni
    • 2
    • 3
  • M. Ferri
    • 4
  • A. Roncaglia
    • 4
  • G. F. Cerofolini
    • 5
  • D. Narducci
    • 5
    • 6
  1. 1.Institute for MicroelectronicsTechnical University of ViennaViennaAustria
  2. 2.Department of Applied SciencesTechnological Educational Institution of ChalkidaPsachnaGreece
  3. 3.Institute of Microelectronics, NCSR ‘Demokritos’AthensGreece
  4. 4.IMM-CNR BolognaItaly
  5. 5.Department of Materials ScienceUniversity of Milano–BicoccaMilanItaly
  6. 6.Consorzio DeltaTi ResearchMilanItaly

Personalised recommendations