Journal of Electronic Materials

, Volume 42, Issue 7, pp 1756–1761 | Cite as

Thermoelectric Properties of Higher Manganese Silicides Prepared by Mechanical Alloying and Hot Pressing

  • Dong-Kil Shin
  • Kyung-Wook Jang
  • Soon-Chul Ur
  • Il-Ho KimEmail author


Higher manganese silicides (HMS), MnSi1.75–δ , were synthesized by mechanical alloying and consolidated by hot pressing. The optimum condition of mechanical alloying was ball milling at 400 rpm for 6 h, and sound sintered compacts could be obtained by hot pressing at temperature higher than 1073 K. The phase fraction of HMS showed no significant difference with compositional (δ) variation, but the MnSi1.75 specimen had the lowest fraction of MnSi of approximately 3%. The lattice constants of HMS with compositional variation were similar to values reported in the literature. All specimens showed Nowotny phase with tetragonal structure, and exhibited i-type conduction at measuring temperatures between 323 K and 823 K. HMS behaved as degenerate semiconductors in that the absolute values of the Seebeck coefficient increased and the electrical conductivity slightly decreased with increasing temperature. MnSi1.73 showed the highest figure of merit of 0.28 at 823 K.


Thermoelectric higher manganese silicide mechanical alloying hot pressing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.I. Fedrov, V.K. Zaitsev, F. Solomkin, and M. Vedernikov, Tech. Phys. Lett. 23, 602 (1997).CrossRefGoogle Scholar
  2. 2.
    M.I. Fedrov and V.K. Zaitsev, Thermoelectrics Handbook, Ed. D.M. Rowe, Taylor and Francis ch. 31 (2006).Google Scholar
  3. 3.
    S.W. Kim, M.K. Cho, Y. Mishima, and D.C. Choi, Intermetallics 11, 399 (2003).CrossRefGoogle Scholar
  4. 4.
    O. Shwomma, A. Preisinger, H. Nowotny, and A. Wittman, Monatsh. Chem. 95, 1527 (1964).CrossRefGoogle Scholar
  5. 5.
    H.W. Knott, M.H. Mueller, and L. Heaton, Acta Cryst. 23, 549 (1967).CrossRefGoogle Scholar
  6. 6.
    G. Zwilling and H. Nowotny, Monatsh. Chem. 104, 668 (1973).CrossRefGoogle Scholar
  7. 7.
    O.G. Karpinskii and B.A. Evseev, Neorg. Mater. 5, 525 (1969).Google Scholar
  8. 8.
    H. Nowotny, The Chemistry of Extended Defects in Non-metallic Solids, Ed. L. Eyring, and M. O’Keefe (Amsterdam: North-Holland, 1970), p. 223.Google Scholar
  9. 9.
    E. Groß, M. Riffel, and U. Stöhrer, J. Mater. Res. 10, 34 (1995).CrossRefGoogle Scholar
  10. 10.
    M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, Mater. Sci. Forum 343, 918 (2000).CrossRefGoogle Scholar
  11. 11.
    A.J. Zhou, T.J. Zou, and X.B. Zhao, Proc. 6th Eur. Conf. Thermoelectr., (Paris: France, 2008), p. 28.Google Scholar
  12. 12.
    I. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefGoogle Scholar
  13. 13.
    A.J. Zhou, X.B. Zhao, T.J. Zhu, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Intermetallics 18, 2051 (2010).CrossRefGoogle Scholar
  14. 14.
    G.H. Flicher, H. Vollenkle, and H. Nowotny, Monatsh. Chem. 98, 2173 (1967).CrossRefGoogle Scholar
  15. 15.
    N. Mingo, D. Hauser, N. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).CrossRefGoogle Scholar
  16. 16.
    D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, and V.E. Borisenko, Phys. Rev. B77, 075205 (2008).Google Scholar
  17. 17.
    W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2005).CrossRefGoogle Scholar
  18. 18.
    W. Luo, H. Li, F. Fu, W. Hao, and X. Tang, J. Electron. Mater. 40, 1233 (2011).CrossRefGoogle Scholar
  19. 19.
    T. Yamada, Y. Miyazaki, and H. Yamane, Thin Solid Films 519, 8524 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Dong-Kil Shin
    • 1
  • Kyung-Wook Jang
    • 2
  • Soon-Chul Ur
    • 1
  • Il-Ho Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungbukSouth Korea
  2. 2.Department of Advanced Materials EngineeringHanseo UniversityChungnamSouth Korea

Personalised recommendations