Journal of Electronic Materials

, Volume 42, Issue 4, pp 654–664 | Cite as

Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

  • Hsin WangEmail author
  • Wallace D. Porter
  • Harald Böttner
  • Jan König
  • Lidong Chen
  • Shengqiang Bai
  • Terry M. Tritt
  • Alex Mayolet
  • Jayantha Senawiratne
  • Charlene Smith
  • Fred Harris
  • Patricia Gilbert
  • Jeff W. Sharp
  • Jason Lo
  • Holger Kleinke
  • Laszlo Kiss


Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.


Thermoelectric Seebeck coefficient electrical resistivity  round-robin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch, 1957).Google Scholar
  2. 2.
    J.C. Peltier, Ann. Chem. LVI, 371 (1834).Google Scholar
  3. 3.
    H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1986).Google Scholar
  4. 4.
    D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995).Google Scholar
  5. 5.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).Google Scholar
  6. 6.
    Jet Propulsion Laboratory Thermoelectric Science and Engineering Web Site, Accessed August 20, 2012.
  7. 7.
    G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 407.Google Scholar
  8. 8.
    G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).CrossRefGoogle Scholar
  9. 9.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  10. 10.
    B.C. Sales, D.G. Mandrus, and B.C. Chakoumakos, Semicond. Semimet. 70, 1 (2001).CrossRefGoogle Scholar
  11. 11.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  12. 12.
    C. Uher, Semicond. Semimet. 69, 139 (2000).CrossRefGoogle Scholar
  13. 13.
    C. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).CrossRefGoogle Scholar
  14. 14.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).CrossRefGoogle Scholar
  15. 15.
    G.S. Nolas, Thermoelectrics Handbook: Macro- to Nano-Structured Materials, edited by D.M. Rowe (Boca Raton, FL: CRC Press, 2005), pp. 33-1.Google Scholar
  16. 16.
    W. Jeischko, Metall. Trans. A 1, 3159 (1970).Google Scholar
  17. 17.
    S.J. Poon, Recent Trends in Thermoelectric Materials Research II, ed. T.M. Tritt, Semiconductors and Semimetals, vol. 70, chap. 2, Treatise Editors, R.K. Willardson and E.R. Weber (New York: Academic Press, 2001), p. 37.Google Scholar
  18. 18.
    J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, J. Phys. Condens. Matter 10, 1013 (1998).CrossRefGoogle Scholar
  19. 19.
    F.G. Aliev, N.B. Brandt, V.V. Moschalkov, V.V. Kozyrkov, R.V. Scolozdra, and A.I. Belogorokhov, Phys. B Condens. Matter 75, 167 (1989).CrossRefGoogle Scholar
  20. 20.
    S. Ogut and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).CrossRefGoogle Scholar
  21. 21.
    W.E. Pickett and J.S. Moodera, Phys. Today 54, 39 (2001).CrossRefGoogle Scholar
  22. 22.
    C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).CrossRefGoogle Scholar
  23. 23.
    H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys. Condens. Matter 11, 1697 (1999).CrossRefGoogle Scholar
  24. 24.
    S. Sportouch, P. Larson, M. Bastea, P. Brazis, J. Ireland, C.R. Kannenwurf, S.D. Mahanti, C. Uher, and M.G. Kanatzidis, Thermoelectric Materials 1998The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon, Jr. (Warrendale, PA: Mater. Res. Soc. Symp. Proc. 545, 1999), p. 421.Google Scholar
  25. 25.
    S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000).CrossRefGoogle Scholar
  26. 26.
    Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88, 1952 (2000).CrossRefGoogle Scholar
  27. 27.
    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005).CrossRefGoogle Scholar
  29. 29.
    E. Skrabeck and D.S. Trimmer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 267.Google Scholar
  30. 30.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  31. 31.
    S. Sportouch, M. Bastea, P. Brazis, J. Ireland, C.R. Kannewurf, C. Uher, and M.G. Kanatzidis, Thermoelectric Materials 1998The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon, Jr. (Warrendale, PA: Mater. Res. Soc. Symp. Proc. 545, 1999), p. 123.Google Scholar
  32. 32.
    E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).CrossRefGoogle Scholar
  33. 33.
    H.W. Mayer, I. Mikhail, and K. Schubert, J. Less-Common Met. 59, 43 (1978).CrossRefGoogle Scholar
  34. 34.
    T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).CrossRefGoogle Scholar
  35. 35.
    V.L. Kuznetsov and D.M. Rowe, J. Alloys Compd. 372, 103 (2004).CrossRefGoogle Scholar
  36. 36.
    S.C. Ur, I.H. Kim, and P. Nash, Mater. Lett. 58, 2132 (2004).CrossRefGoogle Scholar
  37. 37.
    K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C.H. Lee, and H. Obara, J. Alloys Compd. 385, 254 (2004).CrossRefGoogle Scholar
  38. 38.
    G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).CrossRefGoogle Scholar
  39. 39.
    M. Tsutsui, L.T. Zhang, K. Ito, and M. Yamaguchi, Intermetallics 12, 809 (2004).CrossRefGoogle Scholar
  40. 40.
    F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, and B.B. Inversen, Chem. Eur. J. 20, 3861 (2004).CrossRefGoogle Scholar
  41. 41.
    S.G. Kim, I.I. Mazin, and D.J. Singh, Phys. Rev. B 57, 6199 (1998).CrossRefGoogle Scholar
  42. 42.
    J. Nylen, M. Andersson, S. Lidin, and U. Haeussermann, J. Am. Chem. Soc. 126, 16306 (2004).CrossRefGoogle Scholar
  43. 43.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  44. 44.
    M. Fukano, T. Iida, K. Makino, M. Akasaka, Y. Oguni, and Y. Takanashi, Thermoelectric Power Generation, ed. T. P. Hogan, J. Yang, R. Funahashi and T. Tritt (MRS Proceedings Vol. 1044, 2007), U06-13.Google Scholar
  45. 45.
    N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 57, 5036 (2009).CrossRefGoogle Scholar
  46. 46.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
  47. 47.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. Pt. 2, L1127 (2000).CrossRefGoogle Scholar
  48. 48.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).CrossRefGoogle Scholar
  49. 49.
    Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. Pt. 2, L531 (2000).CrossRefGoogle Scholar
  50. 50.
    A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96, 931 (2004).CrossRefGoogle Scholar
  51. 51.
    M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).CrossRefGoogle Scholar
  52. 52.
    I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 362 (2001).CrossRefGoogle Scholar
  53. 53.
    E. Muller, C. Stiewe, D.M. Rowe, and S.G.K. Williams, CRC Thermoelectric Handbook, 2nd ed., Chapter 26 (Boca Raton: CRC, 2006), pp. 1–3.Google Scholar
  54. 54.
    NIST SRM 3451, Low Temperature Seebeck Coefficient Standard (10 K to 390 K) (2011).Google Scholar
  55. 55.
    N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, J. Martin, M.L. Green, E.L. Thomas, J.E. Bonevich, N.R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983–1992 (2011).CrossRefGoogle Scholar
  56. 56.
    E. Velmre, Proc. Estonian Acad. Sci. Eng. 13, 276 (2007).Google Scholar
  57. 57.
    T.J. Seebeck, Aus den Jahren 1822 und 1823, pp. 265–373 (1825). Extracts from four lectures delivered at the Academy of Sciences in Berlin on August 16 (1821), October 18 and 25 (1821), and February 11 (1822).Google Scholar
  58. 58.
    J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).CrossRefGoogle Scholar
  59. 59.
    S. Iwanaga, E.S. Toberer, A. LaLonde, and G.J. Synder, Rev. Sci. Instrum. 82, 1–6 (2011).CrossRefGoogle Scholar
  60. 60.
    M.A. Logan, Bell Syst. Tech. J. 40, 885 (1960).Google Scholar
  61. 61.
    Z. Zhou and C. Uher, Rev. Sci. Instrum. 76, 023901 (2005).CrossRefGoogle Scholar
  62. 62.
    L.J. van der Pauw, Philips Res. Rep. 13, 1–9 (1958).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Hsin Wang
    • 1
    Email author
  • Wallace D. Porter
    • 1
  • Harald Böttner
    • 2
  • Jan König
    • 2
  • Lidong Chen
    • 3
  • Shengqiang Bai
    • 3
  • Terry M. Tritt
    • 4
  • Alex Mayolet
    • 5
  • Jayantha Senawiratne
    • 5
  • Charlene Smith
    • 5
  • Fred Harris
    • 6
  • Patricia Gilbert
    • 7
  • Jeff W. Sharp
    • 7
  • Jason Lo
    • 8
  • Holger Kleinke
    • 9
  • Laszlo Kiss
    • 10
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  4. 4.Clemson UniversityClemsonUSA
  5. 5.Corning Inc.CorningUSA
  6. 6.ZT-Plus Inc.AzusaUSA
  7. 7.Marlow IndustriesDallasUSA
  8. 8.CANMETHamiltonCanada
  9. 9.University of WaterlooWaterlooCanada
  10. 10.University of Quebec at ChicoutimiChicoutimiCanada

Personalised recommendations