Advertisement

Journal of Electronic Materials

, Volume 42, Issue 3, pp 438–444 | Cite as

Band Profile Comparison of the Cubic Perovskites CaCoO3 and SrCoO3

  • Zahid Ali
  • Iftikhar Ahmad
Article

Abstract

Structural geometries, electronic band structures, spin densities, and magnetic properties of the cubic perovskites CaCoO3 and SrCoO3 are studied using the highly accurate spin-polarized density functional theory. It is found that the structural parameters and geometry of SrCoO3 are consistent with experimental results. Careful analysis of the band profiles reveals that the overall electronic band structure of CaCoO3 is similar to the electronic band structure of SrCoO3, with a small difference in details. The total and partial densities of states show that CaCoO3 and SrCoO3 compounds are ferromagnetic metals. The calculated magnetic moments of these compounds also reveal that they are ferromagnets. Furthermore, the comparison of the calculated magnetic moments for Co and SrCoO3 is consistent with experimental results, confirming the validity of our theoretical results. On the basis of the presented electronic structure and magnetic properties, it is expected that CaCoO3 is also a colossal magnetoresistive material like SrCoO3.

Keywords

CMR ferromagnetic metals magnetic perovskites crystal field splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Long, Y. Kaneko, S. Ishiwata, Y. Taguchi, and Y. Tokura, J. Phys. Condens. Matter 23, 245601 (2011).CrossRefGoogle Scholar
  2. 2.
    V. Pardo, P. Balaha, M. Iglesias, K. Schwarz, D. Baldomir, and J.E. Arias, Phys. Rev. B 70, 144422 (2004).CrossRefGoogle Scholar
  3. 3.
    X.L. Wang and E. Takayama-Muromachi, Phys. Rev. B 72, 064401 (2005).CrossRefGoogle Scholar
  4. 4.
    G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, and M. Zahid, Opt. Mater. 33, 553 (2011).CrossRefGoogle Scholar
  5. 5.
    Z. Ali, I. Ahmad, B. Amin, M. Maqbool, G. Murtaza, I. Khan, M.J. Akhtar, and F. Ghaffor, Phys. B 406, 3800 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Balamurugan, J. Supercond. Nov. Magn. 23, 507 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Balamurugan, M. Xu, and E. Takayama-Muromachi, J. Solid State Chem. 178, 3431 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Balamurugan, K. Yamaura, A.B. Karki, D.P. Young, M. Arai, and E. Takayama-Muromachi, Phys. Rev. B 74, 172406 (2006).CrossRefGoogle Scholar
  9. 9.
    R.L. Moreira and A. Dias, J. Phys. Chem. Solids 68, 1617 (2007).CrossRefGoogle Scholar
  10. 10.
    L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006).CrossRefGoogle Scholar
  11. 11.
    R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Mathi Jaya, R. Jagadish, R.S. Rao, and R. Asokamani, Phys. Rev. B 16, 13274 (1991).CrossRefGoogle Scholar
  13. 13.
    M. Zhuang, W. Zhang, A. Hu, and N. Ming, Phys. Rev. B 57, 13655 (1998).CrossRefGoogle Scholar
  14. 14.
    H. Takahashi, F. Munakata, and M. Yamanaka, Phys. Rev. B 57, 15211 (1998).CrossRefGoogle Scholar
  15. 15.
    W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).Google Scholar
  16. 16.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  17. 17.
    Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
  18. 18.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties (Wien, Austria: Techn Universitat, 2001).Google Scholar
  19. 19.
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
  20. 20.
    W. Hai-Ping, D. Kai-Ming, H. Feng-Lan, T. Wei-Shi, T. Chun-Mei, and L. Qun-Xiang, Chin. Phys. Lett. 26, 017105 (2009).CrossRefGoogle Scholar
  21. 21.
    Q.T. Wei, R.S. Guo, F.H. Wang, and H.L. Li, J. Mater. Sci. 40, 1317 (2005).CrossRefGoogle Scholar
  22. 22.
    S. Hebert, V. Pralong, D. Pelloquin, and A. Maignan, J. Magn. Magn. Mater. 316, 394 (2007).CrossRefGoogle Scholar
  23. 23.
    C. Zener, Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
  24. 24.
    P.W. Anderson and H. Hasegaw, Phys. Rev. 100, 675 (1955).CrossRefGoogle Scholar
  25. 25.
    S. Balamurugan and E. Takayama-Muromachi, J. Solid State Chem. 179, 2231 (2006).CrossRefGoogle Scholar
  26. 26.
    J.M. Longo, P.M. Racah, and J.B. Goodenough, J. Appl. Phys. 39, 1327 (1968).CrossRefGoogle Scholar
  27. 27.
    S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, first ed. (New York: Academic Press, 1970), p. 70.Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Department of Physics, Materials Modeling CenterUniversity of MalakandChakdaraPakistan
  2. 2.Department of PhysicsHazara UniversityMansehraPakistan

Personalised recommendations