Advertisement

Journal of Electronic Materials

, Volume 42, Issue 3, pp 403–409 | Cite as

Performance Enhancement of Crystalline Silicon Solar Cells by Coating with Luminescent Silicon Nanostructures

  • Tuhin Shuvra Basu
  • Mallar RayEmail author
  • Nil Ratan Bandyopadhyay
  • Ashit Kumar Pramanick
  • Syed Minhaz Hossain
Article

Abstract

In this work we report a technique that is potentially capable of increasing the efficiency of crystalline silicon solar cells, which dominate the present-day market of photovoltaic devices. The simple and cost-effective method involves coating the surface of a commercially procured silicon solar cell with luminescent silicon nanocrystals. Core/shell silicon/silicon-oxide nanostructures are fabricated by an inexpensive and reproducible technique, where coarse silicon powders are repeatedly milled, oxidized, and etched until their sizes are reduced so as to exhibit room-temperature photoluminescence under ultraviolet excitation. A thin coating of these nanostructures on a standard solar cell, obtained by a simple dip-coating method, increases the open-circuit voltage and short-circuit current, which consequently increases the maximum power delivered by ~16.3% and efficiency by almost ∼39%. We propose that the core/shell nanostructures act as luminescent convertors that convert higher-energy photons to lower-energy photons, thereby leading to less thermal relaxation loss of photoexcited carriers.

Keywords

Core/shell silicon/silicon-oxide nanostructures photoluminescence luminescent convertors solar cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Green, Sol. Energy 74, 181 (2003).CrossRefGoogle Scholar
  2. 2.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).CrossRefGoogle Scholar
  3. 3.
    M. A. Green, Crystalline Silicon Solar Cells, Chap. 4, ed. M.D. Archer and R. Hill (London, UK: Imperial College Press, 2001), pp. 1–49.Google Scholar
  4. 4.
    O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. C. 62, 97 (2000).CrossRefGoogle Scholar
  5. 5.
    N.S. Lewis, Science 315, 798 (2007).CrossRefGoogle Scholar
  6. 6.
    B. O’regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  7. 7.
    S.M. Sze, Semiconductor Devices: Physics and Technology (New York: Wiley, 1985).Google Scholar
  8. 8.
    P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (London: Prentice Hall, 1997).Google Scholar
  9. 9.
    E. Mutlugun, I.M. Soganci, and H.V. Demir, Opt. Express 16, 3537 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Conibeer, M. Green, R. Corkish, Y. Cho, E. Cho, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Li, Thin Solid Films 511, 654 (2006).CrossRefGoogle Scholar
  11. 11.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  12. 12.
    M.A. Green, Solar Cells (Englewood Cliffs, NJ: Prentice-Hall, 1982).Google Scholar
  13. 13.
    A.J. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001).CrossRefGoogle Scholar
  14. 14.
    P.T. Landsberg, H. Nussbaumer, and G. Willeke, J. Appl. Phys. 74, 1451 (1993).CrossRefGoogle Scholar
  15. 15.
    A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
  16. 16.
    M.A. Green, Third Generation Photovoltaics (Sydney: Bridge Printery, 2001).Google Scholar
  17. 17.
    A.J. Nozik, Physica E: Low-dimensional Syst. Nanostructures. 14, 115 (2002).Google Scholar
  18. 18.
    E.F. Zalewski and J. Geist, Appl. Opt. 18, 3942 (1979).CrossRefGoogle Scholar
  19. 19.
    M.M. Caldwell, Bioscience 29, 520 (1979).CrossRefGoogle Scholar
  20. 20.
    M. Ray, K. Jana, N.R. Bandyopadhyay, S.M. Hossain, D. Navarro-Urrios, P.P. Chattyopadhyay, and M.A. Green, Solid State Commun. 149, 352 (2009).CrossRefGoogle Scholar
  21. 21.
    S.N. Magonov, V. Elings, and M.H. Whangbo, Surf. Sci. 375, L385 (1997).CrossRefGoogle Scholar
  22. 22.
    C.H. Lei, K. Ouzineb, O. Dupont, and J.L. Keddie, J. Colloid Interface Sci. 307, 56 (2007).CrossRefGoogle Scholar
  23. 23.
    M. Ray, S. Sarkar, N.R. Bandyopadhyay, S.M. Hossain, and A.K. Pramanick, J. Appl. Phys. 105, 074301(1) (2009).Google Scholar
  24. 24.
    M. Ray, T.S. Basu, A. Jana, N.R. Bandyopadhyay, S.M. Hossain, A.K. Pramanick, and R.F. Klie, J. Appl. Phys. 107, 064311(1) (2010).CrossRefGoogle Scholar
  25. 25.
    M.A. Salem, H. Mizuta, and S. Oda, Appl. Phys. Lett. 85, 3262 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Ray, S.M. Hossain, R.F. Klie, K. Banerjee, and S. Ghosh, Nanotechnology 21, 505602(1) (2010).CrossRefGoogle Scholar
  27. 27.
    M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, and M.H. Nayfeh, Appl. Phys. Lett. 91, 063107 (2007).CrossRefGoogle Scholar
  28. 28.
    G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 76, 2961(1) (1996).CrossRefGoogle Scholar
  29. 29.
    A. Smith, Z.H. Yamani, J. Turner, S.R. Habbal, S. Granick, and M.H. Nayfeh, Phys. Rev. B 72, 205307(1) (2005).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Tuhin Shuvra Basu
    • 1
  • Mallar Ray
    • 1
    Email author
  • Nil Ratan Bandyopadhyay
    • 1
  • Ashit Kumar Pramanick
    • 2
  • Syed Minhaz Hossain
    • 3
  1. 1.School of Materials Science and EngineeringBengal Engineering and Science UniversityHowrahIndia
  2. 2.Materials Science and Technology DivisionNational Metallurgical LaboratoryJamshedpurIndia
  3. 3.Department of PhysicsBengal Engineering and Science UniversityHowrahIndia

Personalised recommendations