Advertisement

Journal of Electronic Materials

, Volume 42, Issue 3, pp 389–397 | Cite as

Effect of Temperature Cycling on Conduction Mechanisms in CdTe Thin Films

  • V. SrivastavEmail author
  • R. Pal
  • N. Saini
  • R. S. Saxena
  • R. K. Bhan
  • L. Sareen
  • K. P. Singh
  • R. K. Sharma
  • V. Venkataraman
Article
  • 172 Downloads

Abstract

CdTe thin films of 500 Å thickness prepared by thermal evaporation technique were analyzed for leakage current and conduction mechanisms. Metal–insulator–metal (MIM) capacitors were fabricated using these films as a dielectric. These films have many possible applications, such as passivation for infrared diodes that operate at low temperatures (80 K). Direct-current (DC) current–voltage (IV) and capacitance–voltage (CV) measurements were performed on these films. Furthermore, the films were subjected to thermal cycling from 300 K to 80 K and back to 300 K. Typical minimum leakage currents near zero bias at room temperature varied between 0.9 nA and 0.1 μA, while low-temperature leakage currents were in the range of 9.5 pA to 0.5 nA, corresponding to resistivity values on the order of 108 Ω-cm and 1010 Ω-cm, respectively. Well-known conduction mechanisms from the literature were utilized for fitting of measured IV data. Our analysis indicates that the conduction mechanism in general is Ohmic for low fields <5 × 104 V cm−1, while the conduction mechanism for fields >6 × 104 V cm−1 is modified Poole–Frenkel (MPF) and Fowler–Nordheim (FN) tunneling at room temperature. At 80 K, Schottky-type conduction dominates. A significant observation is that the film did not show any appreciable degradation in leakage current characteristics due to the thermal cycling.

Keywords

CdTe thin film MIM conduction mechanism modified Poole–Frenkel Richardson Schottky 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, and P. Ubertini, Sensors 9, 3491 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Tewari, A. Bhattacharjee, and P.P. Sahay, J. Mater. Sci. 44, 534 (2009).CrossRefGoogle Scholar
  3. 3.
    X. Mathew, Semicond. Sci. Technol. 18, 1 (2003).CrossRefGoogle Scholar
  4. 4.
    G.G. Rusu, J. Optoelectron. Adv. Mater. 8, 931 (2006).Google Scholar
  5. 5.
    G. Sarusi, G. Cinader, A. Zemel, and D. Eger, J. Appl. Phys. 71, 5070 (1992).CrossRefGoogle Scholar
  6. 6.
    R. Pal, A. Malik, V. Srivastav, B.L. Sharma, V.R. Balakrishnan, V. Dhar, and H.P. Vyas, IEEE Trans. Elecron. Dev. 53, 2727 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Gogoi and K. Barua, Thin Solid Films 92, 227 (1982).CrossRefGoogle Scholar
  8. 8.
    A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 09110 (2009).Google Scholar
  9. 9.
    H.S. Kim, K. Kim, S.H. Lee, H.C. Lee, and C.-K. Kim, J. Korean Phys. Soc. 30, 271 (1997).Google Scholar
  10. 10.
    R.K. Bhan, V. Srivastava, R.S. Saxena, L. Sareen, R. Pal, and R.K. Sharma, Infrared Phys. Technol. 53, 404 (2010).CrossRefGoogle Scholar
  11. 11.
    V. Srivastav, R. Pal, and V. Venkataraman, J. Appl. Phys. 111, 033112 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Mabmoud, A.H. Eid, M. Sayed, Dokki, Rev. Latino Amer. de Metalurgia Mater. 10, 25 (1990).Google Scholar
  13. 13.
    V. Kumar, J.K. Gaur, M.K. Sharma, and T.P. Sharma, Chalco. Lett. 5, 171 (2008).Google Scholar
  14. 14.
    A.J. Al-Douri, F.Y. Al-Shakily, A.A. Alnajjar, M.F.A. Alias, Adv. Cond. Matter Phys. 1 (2011).Google Scholar
  15. 15.
    P.P. Sahay, S. Jha, and M. Shamsuddin, J. Mater. Sci. Lett. 20, 1933 (2001).CrossRefGoogle Scholar
  16. 16.
    R. Ramprasad, Phys. Stat. Sol. (B) 239, 59 (2003).CrossRefGoogle Scholar
  17. 17.
    I. Strzalkowski, S. Joshi, and C.R. Crowell, Appl. Phys. Lett. 28, 350 (1976).CrossRefGoogle Scholar
  18. 18.
    M. Alouani, L. Brey, and N.E. Christensen, Phys. Rev. B 37, 1167 (1988).CrossRefGoogle Scholar
  19. 19.
    C.C. Kim, M. Daraselia, J.W. Garland, and S. Sivananthan, Phys. Rev. B 56, 4786 (1997).CrossRefGoogle Scholar
  20. 20.
    J.G. Simmons, Phys. Rev. 166, 912 (1968).CrossRefGoogle Scholar
  21. 21.
    A.V. Sukach, V.V. Tetyorkin, and N.M. Krolevec, Semicond. Phys. Quant. Electron. Optoelectron. 13, 221 (2010).Google Scholar
  22. 22.
    G.G. Rusu, M. Rusu, E.K. Polychroniadis, and C. Lioutas, J. Optoelectron. Adv. Mater. 7, 1957 (2005).Google Scholar
  23. 23.
    T.K. Lin, Chinese J. Phys. 21, 351 (1988).Google Scholar
  24. 24.
    S.M. Sze, Physics of Semiconductor Devices (New York: John Wiley, 1979), Chap. 9.Google Scholar
  25. 25.
    M. Ieda, G. Sawa, and S. Kato, J. Appl. Phys. 42, 3737 (1971).CrossRefGoogle Scholar
  26. 26.
    P.M. Gorley, I.V. Prokopenko, Z.M. Grushkal, V.P. Makhniy, O.G. Grushka, and O.A. Chervinsky, Semicond. Phys. Quant. Electron. Optoelectron. 11, 124 (2008).Google Scholar
  27. 27.
    M. Schall, M. Walther, and P. Uhd Jepsen, Phys. Rev. B 64, 094301 (2001).CrossRefGoogle Scholar
  28. 28.
    D.T. Marple, Phys. Rev. 129, 2466 (1963).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • V. Srivastav
    • 1
    Email author
  • R. Pal
    • 1
  • N. Saini
    • 1
  • R. S. Saxena
    • 1
  • R. K. Bhan
    • 1
  • L. Sareen
    • 1
  • K. P. Singh
    • 1
  • R. K. Sharma
    • 1
  • V. Venkataraman
    • 2
  1. 1.Solid State Physics LaboratoryDelhiIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations