Journal of Electronic Materials

, Volume 42, Issue 1, pp 40–46 | Cite as

Poisson Ratio of Epitaxial Germanium Films Grown on Silicon

  • Jayesh Bharathan
  • Jagdish Narayan
  • George Rozgonyi
  • Gary E. Bulman


An accurate knowledge of elastic constants of thin films is important in understanding the effect of strain on material properties. We have used residual thermal strain to measure the Poisson ratio of Ge films grown on Si ⟨001⟩ substrates, using the sin2 ψ method and high-resolution x-ray diffraction. The Poisson ratio of the Ge films was measured to be 0.25, compared with the bulk value of 0.27. Our study indicates that use of Poisson ratio instead of bulk compliance values yields a more accurate description of the state of in-plane strain present in the film.


Germanium film Poisson ratio x-ray diffraction 


  1. 1.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).CrossRefGoogle Scholar
  2. 2.
    D.D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D.T. Danielson, S. Jongthammanurak, J. Michel, and L.C. Kimerling, Appl. Phys. Lett. 84, 906 (2004).CrossRefGoogle Scholar
  3. 3.
    P. Pant, J.D. Budai, and J. Narayan, Acta Mater. 58, 1097 (2010).CrossRefGoogle Scholar
  4. 4.
    D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle Scholar
  5. 5.
    S. Oktyabrsky and J. Narayan, Philos. Mag. A 72, 305 (1995).CrossRefGoogle Scholar
  6. 6.
    G. Cornella, S.-H. Lee, W.D. Nix, and J.C. Bravman, Appl. Phys. Lett. 71, 2949 (1997).CrossRefGoogle Scholar
  7. 7.
    T.S. Kuan and M. Murakami, Metall. Trans. A 13A, 383 (1982).Google Scholar
  8. 8.
    C.J. Shute and J.B. Cohen, J. Mater. Res. 6, 950 (1991).CrossRefGoogle Scholar
  9. 9.
    J. Michel, J. Liu, and L.C. Kimerling, Nat. Photonics 4, 527 (2010).CrossRefGoogle Scholar
  10. 10.
    L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L.C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).CrossRefGoogle Scholar
  11. 11.
    I.C. Noyan and J.B. Cohen, Residual Stress Measurement by Diffraction and Measurement (New York: Springer, 1987).Google Scholar
  12. 12.
    D.K. Bowen and B.K. Tanner, High Resolution X-ray Diffractometry and Topography (Bristol: Taylor & Francis, 2005), p. 60.Google Scholar
  13. 13.
    P. Visconti, K.M. Jones, M.A. Reshchikov, R. Cingolani, H. Morkoc, and R.J. Molnar, Appl. Phys. Lett. 77, 3532 (2000).CrossRefGoogle Scholar
  14. 14.
    H.C. Luan, R.L. Desmond, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada, and L.C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).CrossRefGoogle Scholar
  15. 15.
    J.J. Wortman and R.A. Evans, J. Appl. Phys. 36, 153 (1965).CrossRefGoogle Scholar
  16. 16.
    L.J. Bruner and R.W. Keyes, Phys. Rev. Lett. 7, 55 (1961).CrossRefGoogle Scholar
  17. 17.
    H.P. Singh, Acta Crystallogr. A 24, 469 (1968).CrossRefGoogle Scholar
  18. 18.
    Y. Okada and Y. Tokamaru, J. Appl. Phys. 56, 314 (1984).CrossRefGoogle Scholar
  19. 19.
    J.M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, M. Rouviere, L. Vivien, and S. Laval, J. Appl. Phys. 95, 5905 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Jayesh Bharathan
    • 1
    • 2
  • Jagdish Narayan
    • 1
  • George Rozgonyi
    • 1
  • Gary E. Bulman
    • 2
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.RTI InternationalDurhamUSA

Personalised recommendations