Journal of Electronic Materials

, Volume 42, Issue 2, pp 319–331 | Cite as

Characterization of Recrystallization and Microstructure Evolution in Lead-Free Solder Joints Using EBSD and 3D-XRD

  • Bite Zhou
  • Thomas R. Bieler
  • Tae-Kyu Lee
  • Wenjun Liu


Development of vulnerable high-angle grain boundaries (and cracks) from low-angle boundaries during thermal cycling by means of continuous recrystallization was examined in fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) (SAC305) lead-free solder joints. Electron backscatter diffraction (EBSD) and differential-aperture x-ray microscopy (DAXM or 3D-XRD) were used for surface and subsurface characterization. A large number of subgrain boundaries were observed in the parent orientation using both techniques. However, unlike studies of anisotropic deformation in noncubic metals at much lower homologous temperatures, no streaked diffraction peaks were observed in DAXM Laue patterns within each 1 μm3 voxel after thermal cycling, suggesting that geometrically necessary dislocations (GNDs) are effectively absorbed by the preexisting subgrain boundaries. Storage at room temperature (0.6Tm) prior to DAXM measurement may also facilitate recovery processes to reduce local GND contents. Heterogeneous residual elastic strains were found near the interface between a precipitated Cu6Sn5 particle and the Sn grain, as well as near particular subgrain boundaries in the parent orientation. Grain boundary migration associated with recrystallization resulted in regions without internal strains, subgrain boundaries, or orientation gradients. Development of new grain orientations by continuous recrystallization and subsequent primary recrystallization and grain growth occurred in the regions where the cracks developed. Orientation gradients and subgrain structure were observed within newly formed recrystallized grains that could be correlated with slip systems having high Schmid factors.


Lead-free solder Sn crystal orientation recrystallization EBSD synchrotron 3D-XRD strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Elmer, E.D. Specht, and M. Kumar, J. Electron. Mater. 39, 273 (2010).CrossRefGoogle Scholar
  2. 2.
    G.J. Jackson, H. Lu, R. Durairaj, N. Hoo, C. Bailey, N.N. Ekere, and J. Wright, J. Electron. Mater. 33, 1524 (2004).CrossRefGoogle Scholar
  3. 3.
    B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 262 (2012).CrossRefGoogle Scholar
  4. 4.
    A. Pietrikova, J. Bednarcik, and J. Durisin, J. Alloy. Compd. 509, 1550 (2011).CrossRefGoogle Scholar
  5. 5.
    K.-J. Wang, Y.-C. Lin, J.-G. Duh, C.-Y. Cheng, and J.-J. Lee, J. Mater. Res. 25, 972 (2010).CrossRefGoogle Scholar
  6. 6.
    J.O. Suh, K.N. Tu, and N. Tamura, JOM 58, 63 (2006).CrossRefGoogle Scholar
  7. 7.
    D. Mu, J. Read, Y. Yang, and K. Nogita, J. Mater. Res. 26, 2660 (2011).CrossRefGoogle Scholar
  8. 8.
    T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 283 (2012).CrossRefGoogle Scholar
  9. 9.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, and L. Nguyen, Acta Mater. 51, 6253 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).CrossRefGoogle Scholar
  11. 11.
    K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci.-Mater. Electron. 18, 269 (2007).CrossRefGoogle Scholar
  12. 12.
    T.-K. Lee, W. Xie, B. Zhou, T.R. Bieler, and K.-C. Liu, J. Electron. Mater. 40, 1967 (2011).CrossRefGoogle Scholar
  13. 13.
    G.E. Ice, J.D. Budai, and J.W.L. Pang, Science 334, 1234 (2011).CrossRefGoogle Scholar
  14. 14.
    G.E. Ice and R.I. Barabash, Dislocations in Solids, ed. F.R.N. Nabarro and J.P. Hirth (Amsterdam: Elsevier, 2007), p. 500.Google Scholar
  15. 15.
    B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, and J.Z. Tischler, Nature 415, 887 (2002).CrossRefGoogle Scholar
  16. 16.
    W. Liu, G.E. Ice, B.C. Larson, W. Yang, and J.Z. Tischler, Ultramicroscopy 103, 199 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Liu, G.E. Ice, B.C. Larson, W. Yang, J.Z. Tischler, and J.D. Budai, Metall. Mater. Trans. A 35A, 1963 (2004).CrossRefGoogle Scholar
  18. 18.
    L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).CrossRefGoogle Scholar
  19. 19.
    D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004).CrossRefGoogle Scholar
  20. 20.
    H. Chen, J. Han, and M. Li, J. Electron. Mater. 40, 2470 (2011).CrossRefGoogle Scholar
  21. 21.
    G.E. Ice, B.C. Larson, J.Z. Tischler, W. Liu, and W. Yang, Mater. Sci. Eng. A-Struct. 399, 43 (2005).CrossRefGoogle Scholar
  22. 22.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A-Struct. 238, 219 (1997).CrossRefGoogle Scholar
  23. 23.
    J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Kröckel, Comput. Mater. Sci. 50, 690 (2010).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    A.-K. Larsson, L. Stenberg, and S. Lidin, Acta Crystall. B-Struct. B50, 636 (1994).CrossRefGoogle Scholar
  26. 26.
    A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).CrossRefGoogle Scholar
  27. 27.
    B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).CrossRefGoogle Scholar
  28. 28.
    T.-K. Lee, B. Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 39, 2588 (2010).CrossRefGoogle Scholar
  29. 29.
    M.A. Matin, E.W.C. Coenen, W.P. Vellinga, and M.G.D. Geers, Scripta Mater. 53, 927 (2005).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Bite Zhou
    • 1
  • Thomas R. Bieler
    • 1
  • Tae-Kyu Lee
    • 2
  • Wenjun Liu
    • 3
  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.Cisco Systems, Inc.San JoseUSA
  3. 3.Advanced Photon SourceArgonne National LaboratoryArgonneUSA

Personalised recommendations