Journal of Electronic Materials

, Volume 42, Issue 7, pp 1449–1453 | Cite as

Power Factor Characterization of Ge/SiGe Thermoelectric Superlattices at 300 K

  • A. Samarelli
  • L. Ferre Llin
  • Y. Zhang
  • J. M. R. Weaver
  • P. Dobson
  • S. Cecchi
  • D. Chrastina
  • G. Isella
  • T. Etzelstorfer
  • J. Stangl
  • E. Müller Gubler
  • D.J. Paul
Article

Abstract

To accurately characterize the efficiency of thermoelectric materials and characterize the maximum power that they can produce, a device using micro/nanofabrication techniques has been developed, enabling all three properties included in the figure of merit, ZT, of a thermoelectric material to be measured using a single device. The fabrication and testing of the device are presented. The electrical conductivity and Seebeck coefficient of Ge/SiGe heterostructures grown by low-energy plasma-enhanced chemical vapor deposition are used for demonstration. Experimental results as a function of quantum well width are presented, demonstrating power factors up to 6.02 ± 0.05 mW m−1 K−2 at 300 K. Modeling and physical characterization demonstrate that these results are presently limited by high threading dislocation density.

Keywords

Thermoelectrics electrical conductivity Seebeck coefficient power factor device fabrication SiGe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (New York: CRC Taylor and Francis Group, 2005).CrossRefGoogle Scholar
  2. 2.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  3. 3.
    S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L.F. Llin, D. Chrastina, G. Isella, J. Stangl, and D.J. Paul, J. Mater. Sci. (2012). doi:10.1007/s10853-012-6825-0..
  4. 4.
    S.A. McAuley, H. Ashraf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, and G. Nicholls, J. Phys. D. 34, 2769 (2001).Google Scholar
  5. 5.
    H. Tsuda, M. Mori, Y. Takao, K. Eriguchi, and K. Ono, Jpn. J. Appl. Phys. 49 (2010)Google Scholar
  6. 6.
    D. Chrastina, S. Cecchi, J.P. Hague, F. Isa, J. Frigerio, A. Samarelli, L. Ferre-Llin, D.J. Paul, E. Mller, T. Etzelstorfer, J. Stangl, and G. Isella, Thin Solid Films (2012).Google Scholar
  7. 7.
    H. Zhou, G. Mills, B.K. Chong, A. Midha, L. Donaldson, and J.M.R. Weaver, J. Vac. Sci. Technol. A. 17, 2233 (1999).Google Scholar
  8. 8.
    P.S. Dobson, G. Mills, and J.M.R. Weaver, Rev. Sci. Instrum. 76, 054901 (2005).Google Scholar
  9. 9.
    J.R. Waitling and D.J. Paul, J. Appl. Phys. 110, 114508 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • A. Samarelli
    • 1
  • L. Ferre Llin
    • 1
  • Y. Zhang
    • 1
  • J. M. R. Weaver
    • 1
  • P. Dobson
    • 1
  • S. Cecchi
    • 2
  • D. Chrastina
    • 2
  • G. Isella
    • 2
  • T. Etzelstorfer
    • 3
  • J. Stangl
    • 3
  • E. Müller Gubler
    • 4
  • D.J. Paul
    • 1
  1. 1.University of Glasgow, School of EngineeringGlasgowUK
  2. 2.L-NESSPolitecnico di MilanoItaly
  3. 3.Johannes Kepler UniversittLinzAustria
  4. 4.ETH ZurichZurichSwitzerland

Personalised recommendations