Journal of Electronic Materials

, Volume 42, Issue 7, pp 1429–1435 | Cite as

p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion

  • M. K. KeshavarzEmail author
  • D. Vasilevskiy
  • R.A. Masut
  • S. Turenne


We produced six different composites of p-type bismuth antimony telluride alloys and studied their structure and thermoelectric properties. The components of the composites were obtained in powder form by mechanical alloying. Mixed powders of two different compositions were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as revealed by scanning electron microscopy shows a 50% reduction compared with the conventional (Bi0.2Sb0.8)2Te3. X-ray diffraction (XRD) analysis only shows peak broadening with no clear indication of separate phases, and indicates a systematic decrease of crystallite size in the composite materials. Scattering mechanisms of charge carriers were evaluated by Hall-effect measurements. The thermoelectric properties were investigated via the Harman method from 300 K up to 460 K. The composites show no significant degradation of the power factor and high peak ZT values ranging from 0.86 to 1.04. The thermal conductivity of the composites slightly increases with respect to the conventional alloy. This unexpected behavior can be attributed to two factors: (1) the composites do not yet contain a significant number of grains whose sizes are sufficiently small to increase phonon scattering, and (2) each of the combined components of the composites corresponds to a phase with thermal conductivity higher than the minimum value corresponding to the (Bi0.2Sb0.8)2Te3 alloy.


Composite thermoelectrics bismuth telluride hot extrusion mechanical alloying 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Snyder, Thermoelectric Nanomaterials. Accessed 8 April 2011.
  2. 2.
    W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42–56 (2012).CrossRefGoogle Scholar
  3. 3.
    M.G. Kanatzidis, P.F.P. Poudeu, J. D’Angelo, H.J. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, and C. Uher, J. Am. Chem. Soc. 128, 14347–14355 (2006).CrossRefGoogle Scholar
  4. 4.
    M.G. Kanatzidis, P.F.P. Poudeu, A. Gueguen, C.I. Wu, and T. Hogan, Chem. Mater. 22, 1046–1053 (2010).CrossRefGoogle Scholar
  5. 5.
    Z. He, C. Stiewe, S. Li, D. Platzek, G. Karpinski, E. Muller, M. Toprak, and M. Muhammed, Processing and characterization of nano-structured ZrO2/CoSb3 thermoelectric composites, ICT’06: XXV International Conference on Thermoelectrics, Proceedings, 701–705 (2006).Google Scholar
  6. 6.
    M.G. Kanatzidis, J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, and T. Hogan, Adv. Mater. 18, 1170–1173 (2006).CrossRefGoogle Scholar
  7. 7.
    T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer Academic/Plenum, 2004).CrossRefGoogle Scholar
  8. 8.
    H.J. Goldsmid, Introduction to Thermoelectricity (Heidelberg: Springer, 2010).Google Scholar
  9. 9.
    X.H. Ji, J. He, Z. Su, N. Gothard, and T.M. Tritt, J. Appl. Phys. 104, 034907–034907 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Popescu and L.M. Woods, Appl. Phys. Lett. 97, 052102–052103 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, X.Z. Ke, C.F. Chen, J.H. Yang, and P.R.C. Kent, Phys. Rev. Lett. 106, 075501 (2011).CrossRefGoogle Scholar
  12. 12.
    X.A. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Nano Lett. 10, 3373–3378 (2010).CrossRefGoogle Scholar
  13. 13.
    J.-M. Simard, D. Vasilevskiy, F. Belanger, J. L’Ecuyer, and S. Turenne, Proceeding of Twentieth International Conference on Thermoelectrics, 132–135 (2001).Google Scholar
  14. 14.
    C. Andre, D. Vasilevskiy, S. Turenne, and R.A. Masut, J. D-Appl. Phys., 23 (2011). doi: 10.1088/0022-3727/44/23/235401.
  15. 15.
    G.A. Slack, Handbook of Thermoelectrics, ed. D.M. Rowe (New York: CRC, 1994) Chap. 34, pp. 407–440.Google Scholar
  16. 16.
    K. Seeger, Semiconductor Physics (New York: Springer, 1989), pp. 160–165.CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • M. K. Keshavarz
    • 1
    Email author
  • D. Vasilevskiy
    • 1
  • R.A. Masut
    • 1
  • S. Turenne
    • 1
  1. 1.École Polytechnique de MontrÉalMontrealCanada

Personalised recommendations