Advertisement

Journal of Electronic Materials

, Volume 42, Issue 7, pp 1389–1399 | Cite as

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

  • James R. Salvador
  • Jung Y. Cho
  • Zuxin Ye
  • Joshua E. Moczygemba
  • Alan J. Thompson
  • Jeffrey W. Sharp
  • Jan D. König
  • Ryan Maloney
  • Travis Thompson
  • Jeffrey Sakamoto
  • Hsin Wang
  • Andrew A. Wereszczak
  • Gregory P. Meisner
Article

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

Keywords

Thermoelectric skutterudite waste heat energy conversion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009); and references therein.CrossRefGoogle Scholar
  2. 2.
    C.J. Vineis, A. Shakouri, A. Majumbar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2011); and references therein.CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008); and references therein.CrossRefGoogle Scholar
  4. 4.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J. Yang, W. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  5. 5.
    H.J. Goldsmid, Electronic Refrigeration (London: Pion, 1986).Google Scholar
  6. 6.
    J. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245 (2009).CrossRefGoogle Scholar
  7. 7.
    Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).CrossRefGoogle Scholar
  8. 8.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  9. 9.
    C. Caylor, Thermoelectrics Applications Workshop 2012, Baltimore, MD (2012).Google Scholar
  10. 10.
    G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and F.R. Ren, Adv. Energy Mater. 1, 643 (2011).CrossRefGoogle Scholar
  11. 11.
    X. Shi, S. Bai, L. Xi, J. Yang, W.Q. Zhang, L.D. Chen, and J. Yang, J. Mater. Res. 26, 1745 (2011).CrossRefGoogle Scholar
  12. 12.
    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  13. 13.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J.R. Salvador, H. Wang, L.D. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  14. 14.
    J.R. Salvador, J. Yang, A.A. Wereszczak, H. Wang, and J.Y. Cho, Sci. Adv. Mater. 3, 577 (2011).CrossRefGoogle Scholar
  15. 15.
    M.H. Cobble and D.M. Rowe, CRC Handbook of Thermoelectrics (London: CRC, 1995), p. 486.Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • James R. Salvador
    • 1
  • Jung Y. Cho
    • 2
  • Zuxin Ye
    • 2
  • Joshua E. Moczygemba
    • 3
  • Alan J. Thompson
    • 3
  • Jeffrey W. Sharp
    • 3
  • Jan D. König
    • 4
  • Ryan Maloney
    • 5
  • Travis Thompson
    • 5
  • Jeffrey Sakamoto
    • 5
  • Hsin Wang
    • 6
  • Andrew A. Wereszczak
    • 6
  • Gregory P. Meisner
    • 1
  1. 1.Chemical & Materials Systems LabGM Global Research & DevelopmentWarrenUSA
  2. 2.Optimal Inc.PlymouthUSA
  3. 3.Marlow Industries, Inc.DallasUSA
  4. 4.Fraunhofer-Institut für Physikalische MesstechnikFreiburgGermany
  5. 5.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  6. 6.Materials Sciences and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations