Journal of Electronic Materials

, Volume 41, Issue 12, pp 3436–3446 | Cite as

Microstructural Investigation of Interfacial Features in Al Wire Bonds

  • G. KhatibiEmail author
  • B. Weiss
  • J. Bernardi
  • S. Schwarz


In the present study the microstructure of ultrasonically bonded Al wires on AlSiCu and AlSi metallization was investigated by means of scanning electron microscopy, electron back-scattered diffraction, and high-resolution transmission electron microscopy techniques. Detailed microstructural investigations were conducted on samples in the as-bonded condition, subsequent to power cycling tests, and after long-time thermal exposure to reveal the temperature-dependent evolution of the interfaces and the metallization layer. Typical interfacial features were found to be ultrafine and nanoscaled grains of Al and Al2O3, amorphous Al oxide particles, voids, and pores, with regions of high density of dislocations and dislocation loops within the larger grains of the wire and metallization. The observed interface features confirm the suggested mechanism of formation of bonding interface by emergence of submicron grains at the thin interfacial boundary between the metallic pair as a result of dynamic recrystallization and interdiffusion. While isothermal and/or thermomechanical cycling lead to strong grain growth in the metallization layer and the Al wire, the nanostructured interfacial regions mainly remain, indicating a high thermal stability and strength of the interface. Furthermore, evaluation of a large number of wire bonds prepared using standard bonding conditions showed the presence of a certain percentage of nonbonded areas and microstructural variations between the interconnects processed under nominally identical conditions. However, it was found that, if a sufficient effective bonding interface is provided, the long-time reliability of Al wire bonds is maintained due to the stability and strength of the nanostructured interface.


Aluminum ultrasonic bonding interface nanostructured grains transmission electron microscopy dynamic recrystallization reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Harman, Wire Bonding in Microelectronics, 3rd ed. (New York: McGraw-Hill, 2010), p. 13.Google Scholar
  2. 2.
    K.C. Joshi, Weld. J. 50, 840 (1971).Google Scholar
  3. 3.
    G.G. Harman, and K.O. Leedy, 10th Annual Proceedings Reliability Physics, April 5–7, 1972, pp. 49–56.Google Scholar
  4. 4.
    G. Harman and J. Albers, IEEE Trans. Parts Hybrids Packag. 13, 406 (1977).CrossRefGoogle Scholar
  5. 5.
    E. Neppiras, Ultrasonics 3, 128 (1965).CrossRefGoogle Scholar
  6. 6.
    J.E. Krzanowski, IEEE Trans. Compon. Hybrids Manuf. Technol. 13, 176 (1990).CrossRefGoogle Scholar
  7. 7.
    J. Krzanowski and N. Murdeshwar, J. Electron. Mater. 19, 919 (1990).CrossRefGoogle Scholar
  8. 8.
    N. Murdeshwar and J.E. Krzanowski, Metall. Mater. Trans. 28A, 2663 (1997).CrossRefGoogle Scholar
  9. 9.
    J. Onuki, M. Koizumi, and J. Echigoya, Mater. Trans. JIM 37, 1324 (1996).Google Scholar
  10. 10.
    U. Geißler, M. Schneider-Ramelow, K.D. Lang, and H. Reichl, J. Electron. Mater. 35, 173 (2006).CrossRefGoogle Scholar
  11. 11.
    Y.-R. Jeng and J.-H. Horng, J. Tribol. T ASME 123, 725 (2001).CrossRefGoogle Scholar
  12. 12.
    C.M. Hu, N. Guo, H. Du, W.H. Li, and M. Chen, Int. J. Adv. Manuf. Technol. 29, 860 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Hu, N. Guo, H. Du, and X.M. Jian, Int. J. Adv. Manuf. Technol. 29, 1134 (2006).CrossRefGoogle Scholar
  14. 14.
    B. Langenecker, IEEE Trans. Sonics Ultrason., SU-13,1 (1966).Google Scholar
  15. 15.
    U. Geißler, M. Schneider-Ramelow, and H. Reichl, IEEE Trans. Compon. Packag. Technol. 32, 794 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Brodyanski, C. Born, and M. Kopnarski, Appl. Surf. Sci. 252, 94 (2005).CrossRefGoogle Scholar
  17. 17.
    H. Ji, M. Li, Y. Kweon, W. Chang, and C. Wang, Proc. IEEE-ICEPT (2007). doi: 10.1109/ICEPT.2007.4441433.Google Scholar
  18. 18.
    M. Ciappa, Microelectron. Reliab. 42, 653 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Agyakwa, M.R. Corfield, L. Yang, J.F. Li, V.M.F. Marques, and C.M. Johnson, Microelectron. Reliab. 51, 406 (2011).CrossRefGoogle Scholar
  20. 20.
    R. Geiss and D.T. Read, Acta Mater. 56, 274 (2008).CrossRefGoogle Scholar
  21. 21.
    W. Hoffelner and B. Weiss, Scr. Metall. 12, 1047 (1978).CrossRefGoogle Scholar
  22. 22.
    A. Peslo, Ultrasonics 22, 37 (1984).CrossRefGoogle Scholar
  23. 23.
    G.E. Totten and D.S. MacKenzie, eds., Handbook of Aluminum, Vol. 2: Alloy Production and Materials Manufacturing (Boca Raton, FL: CRC Press, 2003), pp. 214–215.Google Scholar
  24. 24.
    D. Ponge, M. Bredehöft, and G. Gottstein, Scripta Mater. 37, 1769 (1997).CrossRefGoogle Scholar
  25. 25.
    J.-Q. Su, T.W. Nelson, and C.J. Sterling, Scripta Mater. 52, 135 (2005).CrossRefGoogle Scholar
  26. 26.
    L.E. Murr, G. Liu, and J.C. McClure, J. Mater. Sci. 33, 1243 (1998).CrossRefGoogle Scholar
  27. 27.
    A.F. Beck, M.A. Heine, E.J. Caule, and M.J. Pryor, Corros. Sci. 7, 1 (1967).CrossRefGoogle Scholar
  28. 28.
    P.C. Snijders, L.P.H. Jeurgens, and W.G. Sloof, Surf. Sci. 496, 97 (2002).CrossRefGoogle Scholar
  29. 29.
    M. Ohring, Material Science of Thin Films, 2nd ed. (New York: Academic, 2002), pp. 697–704.Google Scholar
  30. 30.
    J. Onuki, M. Koizumi, and M. Suwa, IEEE Trans. Adv. Packag. 23, 108 (2000).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Vienna University of Technology, USTEMViennaAustria

Personalised recommendations