Advertisement

Journal of Electronic Materials

, Volume 41, Issue 12, pp 3249–3258 | Cite as

Thermal and Mechanical Stability of Ce-Containing Sn-3.9Ag-0.7Cu Lead-Free Solder on Cu and Electroless Ni-P Metallizations

  • Huxiao Xie
  • Nikhilesh Chawla
  • Kabir Mirpuri
Article

Rare earth (RE)-containing solders have been shown to exhibit improvements in both physical and mechanical properties. However, the reactive nature of RE elements with oxygen may degrade the mechanical properties even under room-temperature aging. In this article, we report on the microstructure and mechanical properties of as-processed and thermally aged Ce-containing Sn-3.9Ag-0.7Cu solder reflowed on electroless Ni-P and Cu metallizations. The microstructure of both as-reflowed and thermally aged Ce-containing Sn-3.9Ag-0.7Cu solder joints is more refined compared with conventional Sn-3.9Ag-0.7Cu solder joints. The (Cu,Ni)6Sn5 intermetallic layer formed at the Cu/Ce-containing solder interface is thinner than that of Sn-3.9Ag-0.7Cu solder. The monotonic shear behavior of as-reflowed and thermally aged Sn-3.9Ag-0.7Cu-0.5Ce/Cu and electroless Ni-P lap shear joints was studied, and compared with Sn-3.9Ag-0.7Cu. It was found that both as-reflowed and thermally aged Ce-containing Sn-3.9Ag-0.7Cu exhibit higher strain to failure compared with Sn-3.9Ag-0.7Cu solder joints.

Keywords

Rare earth lead-free solder isothermal aging monotonic shear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ma and J. Suhling, J. Mater. Sci. 44, 1141 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Kang and A. Sarkhel, J. Electron. Mater. 23, 701 (1994).CrossRefGoogle Scholar
  3. 3.
    S. Wiese and K.J. Wolter, Microelectron. Reliab. 44, 1923 (2004).CrossRefGoogle Scholar
  4. 4.
    S. Kang, IBM J. Res. Dev. 49, 607 (2005).CrossRefGoogle Scholar
  5. 5.
    N. Chawla, Int. Mater. Rev. 54, 368 (2009).CrossRefGoogle Scholar
  6. 6.
    I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).CrossRefGoogle Scholar
  7. 7.
    N.C. Lee, Materials for Advanced Packaging, ed. L. Daniel and C. P. Wong (New York: Springer Science Business Media, 2009).Google Scholar
  8. 8.
    M. Dudek, R.S. Sidhu, N. Chawla, and M. Renavikar, J. Electron. Mater. 35, 2088 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Dudek, R. Sidhu, and N. Chawla, JOM 58, 57 (2006).CrossRefGoogle Scholar
  10. 10.
    M. Dudek and N. Chawla, Metall. Mater. Trans. A 41, 610 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Dudek and N. Chawla, J. Electron. Mater. 38, 210 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Shi, J. Tian, H. Hao, Z. Xia, Y. Lei, and F. Guo, J. Alloys Compd. 453, 180 (2008).CrossRefGoogle Scholar
  13. 13.
    L. Gao, S. Xue, L. Zhang, Z. Sheng, G. Zeng, and F. Ji, J. Mater. Sci. Mater. Electron. 21, 643 (2010).CrossRefGoogle Scholar
  14. 14.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).CrossRefGoogle Scholar
  15. 15.
    D.Q. Yu, J. Zhao, and L. Wang, J. Alloys Compd. 376, 170 (2004).CrossRefGoogle Scholar
  16. 16.
    T.-H. Chuang, Scripta Mater. 55, 983 (2006).CrossRefGoogle Scholar
  17. 17.
    T.-H. Chuang, Metall. Mater. Trans. A 38, 1048 (2007).CrossRefGoogle Scholar
  18. 18.
    C.-Y. Lee and K.-L. Lin, Thin Solid Films 249, 201 (1994).CrossRefGoogle Scholar
  19. 19.
    A.J.G. Strandjord, S. Popelar, and C. Jauernig, Microelectron. Reliab. 42, 265 (2002).CrossRefGoogle Scholar
  20. 20.
    K. Zeng, V. Vuorinen, and J.K. Kivilahti. Electronic Components and Technology Conference, Proceedings (2001).Google Scholar
  21. 21.
    A. Sharif, Y.C. Chan, M.N. Islam, and M.J. Rizvi, J. Alloys Compd. 388, 75–82 (2005).CrossRefGoogle Scholar
  22. 22.
    Y.-D. Jeon, S. Nieland, A. Ostmann, H. Reichi, and K.-W. Paik, et al., J. Electron. Mater. 32, 548 (2003).CrossRefGoogle Scholar
  23. 23.
    C.M.T. Law and C.M.L. Wu, Proceeding of the Sixth IEEE CPMT Conference (2004).Google Scholar
  24. 24.
    F. Ochoa, X. Deng, and N. Chawla, J. Electron. Mater. 33, 1596 (2004).CrossRefGoogle Scholar
  25. 25.
    X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1403 (2003).CrossRefGoogle Scholar
  26. 26.
    H.X. Xie, L. Jiang, and N. Chawla, Unpublished research, 2012.Google Scholar
  27. 27.
    K.E. Yazzie, H.X. Xie, and N. Chawla, Scripta Mater. 66, 586 (2012).CrossRefGoogle Scholar
  28. 28.
    H.X. Xie, K.E. Yazzie, K. Mirpuri, and N. Chawla, Unpublished research, 2012.Google Scholar
  29. 29.
    C. Wu and Y. Wong, J. Mater. Sci. Mater. Electron. 18, 77 (2007).CrossRefGoogle Scholar
  30. 30.
    L. Zhang, S. Xue, G. Zeng, L. Gao, and Y. Huan, J. Alloys Compd. 2012, 38 (2012).CrossRefGoogle Scholar
  31. 31.
    B. Lu, H. Li, J. Wang, H. Zhu, and X. Jiao, J. Central South Univ. Technol. 15, 313 (2008).CrossRefGoogle Scholar
  32. 32.
    H. Hao, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 37, 2 (2008).CrossRefGoogle Scholar
  33. 33.
    A. Kumar, M. He, and Z. Chen, Surf. Coat. Technol. 198, 283–286 (2005).CrossRefGoogle Scholar
  34. 34.
    P. Sun, C. Anderson, X. Wei, Z. Cheng, D. Shangguan, and J. Liu, J. Alloys Compd. 425, 191–199 (2006).CrossRefGoogle Scholar
  35. 35.
    A. Kumar, M. He, and Z. Chen, Surf. Coat. Technol. 198, 283 (2005).CrossRefGoogle Scholar
  36. 36.
    D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, and J.K.L. Lai, J. Mater. Res. 20, 8 (2005).Google Scholar
  37. 37.
    H.X. Xie, N. Chawla, and Y.-L. Shen, Microelectron. Reliab. 51, 5 (2011).Google Scholar
  38. 38.
    M. Dudek and N. Chawla, Intermetallics 18, 1016 (2010).CrossRefGoogle Scholar
  39. 39.
    I. Dutta, P. Kumar, and G. Subbarayan, JOM 61, 29 (2009).CrossRefGoogle Scholar
  40. 40.
    O. Shengquan, Y. Xu, K.N. Tu, M.O. Alam, Y.C. Chan, et al. Electronic Components and Technology Conference, Proceedings (2005).Google Scholar
  41. 41.
    X. Deng, R. Sidhu, P. Johnson, and N. Chawla, Metall. Mater. Trans. A 36, 55 (2005).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Materials Science and Engineering, School for Engineering of MatterTransport and Energy, Arizona State UniversityTempeUSA
  2. 2.Assembly Technology DevelopmentIntel CorporationChandlerUSA

Personalised recommendations