Journal of Electronic Materials

, Volume 41, Issue 8, pp 2065–2072 | Cite as

Electronic Properties as a Function of Ag/Sb Ratio in Ag1−yPb18Sb1+zTe20 Compounds

  • Jayaram Dadda
  • Eckhard Müller
  • Benedikt Klobes
  • Paula Bauer Pereira
  • Raphael Hermann


In this study efforts have been made to optimize the electronic properties such as the electrical conductivity and Seebeck coefficient of Ag1−yPb18Sb1+zTe20 (lead-antimony-silver-tellurium, LAST-18) compounds by systematically varying the Ag and Sb compositions with constant Pb/Te ratio. It was found that increasing the content of Sb relative to Ag raised the charge carrier density (n) and thereby the electrical conductivity and power factor. The results indicate that, for deficient Ag, the excess trivalent Sb atoms occupy divalent Pb sites in the unit cell, increasing the value of n in the system. It was established that the Seebeck coefficient decreases with increasing n, indicating a dominant acoustic phonon scattering mechanism in the current alloys. The results demonstrate that the interaction between Ag and Sb atoms plays a major role in determining the electronic properties in the current Ag1−yPb18Sb1+zTe20 compounds.


LAST Ag-Pb-Sb-Te charge carrier density Seebeck coefficient electrical conductivity Pisarenko relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Goldsmid, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), p. 407.Google Scholar
  2. 2.
    L. Hicks, Appl. Phys. Lett. 63, 3230 (1993).CrossRefGoogle Scholar
  3. 3.
    M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  4. 4.
    J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B74, 205335 (2006).Google Scholar
  5. 5.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).CrossRefGoogle Scholar
  6. 6.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
  7. 7.
    B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.-Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).CrossRefGoogle Scholar
  8. 8.
    J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006).CrossRefGoogle Scholar
  9. 9.
    Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, and M.P. Dariel, Chem. Mater. 22, 1054 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
  11. 11.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Sootsman, R. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis, MRS Fall Meeting (2005).Google Scholar
  13. 13.
    S.Y. Yang, M. Tang, Z.X. Liu, and H. Yu, International Conference on Thermoelectrics 2007, Jeju Island, Korea (2007).Google Scholar
  14. 14.
    J. Dadda, E. Müller, S. Perlt, T. Höche, P.B. Pereira, and R.P. Hermann, J. Mater. Res. 26, 1800 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Zhou, J.-F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Zhou, J.-F. Li, H. Wang, T. Kita, L. Li, and Z. Chen, J. Electron. Mater. 40, 862 (2011).CrossRefGoogle Scholar
  17. 17.
    H.S. Dow, M.W. Oh, S.D. Park, B.S. Kim, B.K. Min, H.W. Lee, and D.M. Wee, J. Appl. Phys. 105, 113703 (2009).CrossRefGoogle Scholar
  18. 18.
    T.J. Zhu, F. Yan, S.N. Zhang, and X.B. Zhao, J Phys. D: App. Phys. 40, 3537 (2007).CrossRefGoogle Scholar
  19. 19.
    M.-K. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher, K.M. Paraskevopoulos, S.D. Mahanti, and M.G. Kanatzidis, Chem. Mater. 20, 3512 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Kosuga, M. Uno, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 391, 288 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Wang, J.-F. Li, C.-W. Nan, M. Zhou, W. Liu, B.-P. Zhang, and T. Kita, Appl. Phys. Lett. 88, 092104 (2006).CrossRefGoogle Scholar
  22. 22.
    N. Chen, F. Gascoin, G.J. Snyder, E. Muller, G. Karpinski, and C. Stiewe, Appl. Phys. Lett. 87, 171903 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Strauss, J. Electron. Mater. 2, 553 (1973).CrossRefGoogle Scholar
  24. 24.
    E.M. Levin, B.A. Cook, K. Ahn, M.G. Kanatzidis, and K. Schmidt-Rohr, Phys. Rev. B80, 115211 (2009).Google Scholar
  25. 25.
    H.S. Dow, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, and D.M. Wee, J. Appl. Phys. 108, 113709 (2010).CrossRefGoogle Scholar
  26. 26.
    M. Schenk, H. Berger, A. Klimakow, M. Muehlberg, and M. Wienecke, Cryst. Res. Technol. 23, 77 (1988).CrossRefGoogle Scholar
  27. 27.
    A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (UK: Infosearch, 1957).Google Scholar
  28. 28.
    Y.I. Ravich, B.A. Efimova, and V.I. Tamarchenko, Phys. Stat. Sol. B43, 453 (1971).Google Scholar
  29. 29.
    K. Hoang, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B81, 115106 (2010).Google Scholar
  30. 30.
    D.I. Bilc, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B74, 125202 (2006).Google Scholar
  31. 31.
    H. Hazama, U. Mizutani, and R. Asahi, Phys. Rev. B73, 1 (2006).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Jayaram Dadda
    • 1
  • Eckhard Müller
    • 1
  • Benedikt Klobes
    • 2
  • Paula Bauer Pereira
    • 2
    • 3
  • Raphael Hermann
    • 2
    • 3
  1. 1.German Aerospace Center (DLR)Institute of Materials ResearchCologneGermany
  2. 2.Forschungszentrum Jülich GmbH, PGI, JNCS and JARA-FITJülichGermany
  3. 3.Faculty of SciencesUniversity of LiègeLiègeBelgium

Personalised recommendations