Journal of Electronic Materials

, Volume 41, Issue 11, pp 3013–3016 | Cite as

Thermally Oxidized InAlN of Different Compositions for InAlN/GaN Heterostructure Field-Effect Transistors

  • P. KordošEmail author
  • M. Mikulics
  • R. Stoklas
  • K. Čičo
  • A. Dadgar
  • D. Grűtzmacher
  • A. Krost

Properties of InAlN/GaN heterostructure field-effect transistors with thermally oxidized (750°C, 2 min) InAlN barrier layers of different compositions (InN = 13%, 17%, and 21%) were evaluated. The saturation drain current was inversely proportional to the InN content and was lower than that obtained with nonoxidized devices. From the capacitance measurement, the resulting sheet charge density decreased from 1.1 × 1013 cm−2 to 0.6 × 1013 cm−2 with increased InN content, and it was only approximately 50% of that of the nonoxidized counterparts. The oxide thickness of approximately 1 nm was extracted from the zero-bias capacitances. The pulsed measurements yielded a very high gate lag independent from the InAlN composition (the pulsed-to-static drain current ratio was ∼0.5 for a 200-ns pulse width). On the other hand, a significantly lower gate lag was observed on nonoxidized SiN x passivated InAlN/GaN devices. The results demonstrate that a high density of trap states was created in the thermally oxidized InAlN/GaN structures.


InAlN/GaN HFETs thermal oxidation trap states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Tirelli, D. Marti, H. Sun, A.R. Alt, J.-F. Carlin, M.N. Grandjean, and C.R. Bolognesi, IEEE Electron Device Lett. 32, 1364 (2011).CrossRefGoogle Scholar
  2. 2.
    N. Sarazin, E. Morvan, M.A. di Forte Poisson, M. Oualli, C. Gaquière, O. Jardel, O. Drisse, M. Tordjman, M. Magis, and S.L. Delage, IEEE Electron Device Lett. 31, 11 (2010).CrossRefGoogle Scholar
  3. 3.
    P. Kordoš, G. Heidelberger, J. Bernát, A. Fox, M. Marso, and H. Lüth, Appl. Phys. Lett. 87, 143501 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Abermann, G. Pozzovivo, J. Kuzmik, G. Strasser, D. Pogany, J.-F. Carlin, N. Grandjean, and E. Bertagnolli, Semicond. Sci. Technol. 22, 1272 (2007).CrossRefGoogle Scholar
  5. 5.
    F. Medjdoub, N. Sarazin, M. Tordjman, M. Magis, M.A. di Forte-Poisson, M. Knez, E. Delos, C. Gaquière, S.L. Delage, and E. Kohn, Electron. Lett. 43, 691 (2007).CrossRefGoogle Scholar
  6. 6.
    P. Kordoš, M. Mikulics, A. Fox, D. Gregušová, K. Čičo, J.-F. Carlin, N. Grandjean, J. Novák, and K. Fröhlich, IEEE Electron Device Lett. 31, 180 (2010).CrossRefGoogle Scholar
  7. 7.
    D. Gregušová, R. Stoklas, Ch. Mizue, Y. Hori, J. Novák, T. Hashizume, and P. Kordoš, J. Appl. Phys. 107, 106104 (2010).CrossRefGoogle Scholar
  8. 8.
    J.W. Chung, O.I. Saadat, J.M. Tirado, X.G. Gao, S. Guo, and T. Palacios, IEEE Electron Device Lett. 30, 904 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Alomari, F. Medjdoub, J.-F. Carlin, E. Feltin, N. Grandjean, A. Chuvilin, U. Kaiser, C. Gaquière, and E. Kohn, IEEE Electron Device Lett. 30, 1131 (2009).CrossRefGoogle Scholar
  10. 10.
    J. Kováč, R. Šramatý, A. Chvála, H. Sibboni, E. Morvan, M.A. DiForte-Poisson, D. Donoval, and P. Kordoš, Appl. Phys. Lett. 98, 162111 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Eickelkamp, M. Weingarten, L.R. Khoshroo, N. Ketteniss, H. Behmenburg, M. Heuken, H. Kalisch, R.H. Jansen, and A. Vescan, Phys. Status Solidi C 8, 2213 (2011).CrossRefGoogle Scholar
  12. 12.
    J.H. Leach, M. Wu, X. Ni, X. Li, Ü. ÖzgÜr, and H. Morkoç, Phys. Status Solidi A 207, 211 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Mikulics, R. Stoklas, A. Dadgar, D. Gregušová, J. Novák, D. Grützmacher, A. Krost, and P. Kordoš, Appl. Phys. Lett. 97, 173505 (2010).CrossRefGoogle Scholar
  14. 14.
    G. Meneghesso, F. Rampazzo, P. Kordoš, G. Verzellesi, and E. Zanoni, IEEE Trans. Electron Devices 53, 2932 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • P. Kordoš
    • 1
    • 2
    Email author
  • M. Mikulics
    • 3
  • R. Stoklas
    • 1
  • K. Čičo
    • 1
  • A. Dadgar
    • 4
  • D. Grűtzmacher
    • 3
  • A. Krost
    • 4
  1. 1.Department of MicroelectronicsSlovak University of TechnologyBratislavaSlovakia
  2. 2.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Research Centre JülichJülichGermany
  4. 4.Institute of Experimental PhysicsUniversity MagdeburgMagdeburgGermany

Personalised recommendations