Journal of Electronic Materials

, Volume 41, Issue 5, pp 928–934 | Cite as

Comparison of Photonic-Crystal-Enhanced Thermophotovoltaic Devices With and Without a Resonant Cavity

Article

Abstract

The ability to efficiently convert heat into usable energy using thermophotovoltaics (TPV) has been a topic of research for many years. Due to recent microfabrication advances, TPV and photonic crystals (PhC) have been the subject of renewed interest, especially as spectral emitters in TPV applications. However, PhC surface enhancements have also been shown to increase the efficiency of photon-to-current conversion for infrared photodetectors. Here, we investigate the potential efficiency enhancements gained by using PhC for a front-side TPV diode stage surface feature. A back reflecting plane was also added to increase the efficiency of TPV cells by introducing a resonant cavity. The simulations suggest an increased interaction time between photons and excitons leading to an increase in carrier generation. A simulated two-dimensional (2D) PhC consisting of Si3N4 rods in an ohmic contact material has demonstrated a possible 81% increase in absorption for a GaSb TPV cell.

Keywords

Thermophotovoltaics photonic crystal gallium antimonide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Nelson, Semicond. Sci. Technol. 18, S141 (2003).CrossRefGoogle Scholar
  2. 2.
    M. Mauk and G. Michael, Mid-Infrared Semiconductor Optoelectronics (Berlin: Springer, 2006), p. 674.Google Scholar
  3. 3.
    J. Joannapolous, S. Johnson, J. Winn, and R. Meade, Photonic Crystal Modeling the Flow of Light, 2nd ed. (Princeton, NJ: Princeton University Press, 2008).Google Scholar
  4. 4.
    M. Pralle, N. Moelders, M. NcNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, I. El-Kady, and R. Biswas, Appl. Phys. Lett. 81, 4685 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Gee, J. Moreno, S. Lin, and J. Fleming, 29th IEEE Photovoltaic Specialists Conference Proceedings (New Orleans, LA, 2002).Google Scholar
  6. 6.
    J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, Nature 417, 52 (2002).Google Scholar
  7. 7.
    S. Lin, J. Moreno, and J. Fleming, Appl. Phy. Lett. 83, 380 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Sai and H. Yugami, Appl. Phy. Lett. 85, 3399 (2004).CrossRefGoogle Scholar
  9. 9.
    I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. Kassakian, Proc. SPIE 5450, 416 (2004).CrossRefGoogle Scholar
  10. 10.
    I. El-Kady, C. Murry, T. Luk, R. Koudelka, and J. Fleming, Proc. CLEO/QELS (May 2006).Google Scholar
  11. 11.
    N. Jovanovic, I. Celanovic, and J. Kassakian, TPV7 AIP Conference Proceedings, vol. 890 (2007), pp. 47–55.Google Scholar
  12. 12.
    M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. Dowling, Sol. Energy Mater. Solar Cells 91, 1599 (2007).CrossRefGoogle Scholar
  13. 13.
    G.B. Farfan, M.F. Su, M.M. Reda Taha, and I. El-Kady, Proc. SPIE 7609, 76090V (2010).Google Scholar
  14. 14.
    F. O'Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, J. Appl. Phys. 97, 033529 (2005)Google Scholar
  15. 15.
    K.T. Posani, V. Tripathi, S. Annamalai, N.R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O.J. Painter, Appl. Phys. Lett. 88, 151104 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Schartner, S. Golka, C. Pflugl, W. Schrenk, A. Andrews, T. Roch, and G. Strasser, Appl. Phys. Lett. 89, 151107 (2006).CrossRefGoogle Scholar
  17. 17.
    J. Yang, M. Seo, I. Hwang, S. Kim, and Y. Lee, Appl. Phys. Lett. 93, 211103 (2008).CrossRefGoogle Scholar
  18. 18.
    C. Shemelya and T. Vandervelde, MRS Proceedings 1208 (2010). doi: 10.1557/PROC-1208-O16-06.

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Renewable Energy and Applied Photonics Laboratories, Department of Electrical and Computer EngineeringTufts UniversityMedfordUSA

Personalised recommendations