Journal of Electronic Materials

, Volume 41, Issue 5, pp 948–953 | Cite as

Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature

  • Peter G. Burke
  • Trevor E. Buehl
  • Pernot Gilles
  • Hong Lu
  • Ali Shakouri
  • Chris J. Palmstrom
  • John E. Bowers
  • Arthur C. Gossard


Under certain growth conditions in molecular beam epitaxy, erbium, indium, gallium, and arsenic form a two-phase composite, consisting of ErAs nanoparticles embedded in dilute Er-doped In0.53Ga0.47As. This paper further explores the effect of growth conditions, specifically growth temperature, on the nanostructure of this material and the resulting thermal and electrical transport properties. For a set of samples grown with substrate temperatures varying from 430°C to 525°C, we find that the thermal conductivity decreases slightly with increasing growth temperature (from 4.8 W/m K to 4.1 W/m K) while the electrical conductivity decreases dramatically with increasing growth temperature (from 2100 S/cm to 110 S/cm), which is largely due to decreasing carrier concentration. At higher growth temperatures, more erbium precipitates out of solution and the size and density of the ErAs nanoparticles increase, as characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), while the total erbium concentration does not change with growth temperature, as characterized by Rutherford backscatter spectrometry (RBS). Measurement of the erbium concentration by secondary-ion mass spectrometry suggests that the Er bonding configuration changes with growth temperature. These results indicate that increasing the ratio of solute Er atoms in the In0.53Ga0.47As host to precipitated Er atoms in ErAs particles increases the carrier density and electrical conductivity of the total composite material.


Erbium nanoparticles MBE growth temperature  doping thermoelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Gossard, and S. Stemmer, Nano Lett. 8, 2097 (2008).CrossRefGoogle Scholar
  2. 2.
    W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006).CrossRefGoogle Scholar
  3. 3.
    P.G. Burke, H. Lu, N.G. Rudawski, S. Stemmer, A.C. Gossard, J.-H. Bahk, and J.E. Bowers, J. Vac. Sci. Technol. B 29, 03C117 (2011).CrossRefGoogle Scholar
  4. 4.
    D.C. Driscoll, M.P. Hanson, C. Kadow, and A.C. Gossard, Appl. Phys. Lett. 78, 1703 (2001).CrossRefGoogle Scholar
  5. 5.
    F.J. DiSalvo, Science 285, 703–706 (1999).CrossRefGoogle Scholar
  6. 6.
    J.M.O. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, Z.X. Bian, A. Majumdar, J.E. Bowers, A. Shakouri, and A.C. Gossard, J. Appl. Phys. 108, 123702 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Zeng, J.-H. Bahk, J.E. Bowers, H. Lu, J.M.O. Zide, A.C. Gossard, R. Singh, Z. Bian, A. Shakouri, S.L. Singer, W. Kim, and A. Majumdar, J. Electron. Mater. 37, 1786–1792 (2008).CrossRefGoogle Scholar
  8. 8.
    R. Singh, Z. Bian, G. Zeng, J.M.O. Zide, J. Christofferson, H.F. Chou, A.C. Gossard, J.E. Bowers, and A. Shakouri, Materials Research Society Symposium Proceedings, Vol. 886 (2006), pp. 0886-F04-04.1Google Scholar
  9. 9.
    J.M.O. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, and A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005).CrossRefGoogle Scholar
  10. 10.
    J.M.O. Zide, G. Zeng, J.-H. Bahk, W. Kim, S.L. Singer, D. Vashaee, Z.X. Bian, R. Singh, J.E. Bowers, A. Majumdar, A. Shakouri, and A.C. Gossard, XXV International Conference on Thermoelectrics (IEEE, 2006), pp. 280–282.Google Scholar
  11. 11.
    G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z.X. Bian, Y. Zhang, A. Shakouri, S.L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007).CrossRefGoogle Scholar
  12. 12.
    J.M.O. Zide, D. Vashaee, Z. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).CrossRefGoogle Scholar
  13. 13.
    G. Zeng, J.E. Bowers, J.M.O. Zide, A.C. Gossard, W. Kim, S. Singer, A. Majumdar, R. Singh, Z. Bian, Y. Zhang, and A. Shakouri, Appl. Phys. Lett. 88, 113502 (2006).CrossRefGoogle Scholar
  14. 14.
    H. Lu, P.G. Burke, A.C. Gossard, G. Zeng, A.T. Ramu, J.-H. Bahk, and J.E. Bowers, Adv. Mater. 23, 2377 (2011).CrossRefGoogle Scholar
  15. 15.
    D. Xu, J.P. Feser, Y. Zhao, H. Lu, P.G. Burke, A.C. Gossard, and A. Majumdar, ASME Conference Proceedings 2010 (2010), p. 525.Google Scholar
  16. 16.
    C. Kadow, J.A. Johnson, K. Kolstad, and A.C. Gossard, J. Vac. Sci. Technol. B 21, 29 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. Fujiwara, N. Matsubara, J. Tsuchiya, T. Ito, and Y. Takeda, Jpn. J. Appl. Phys. 36, 2587–2591 (1997).CrossRefGoogle Scholar
  18. 18.
    N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri, Nano Lett. 11, 225–230 (2011).CrossRefGoogle Scholar
  20. 20.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, Mi. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).Google Scholar
  21. 21.
    A.Y. Cho, Thin Solid Films 100, 291–317 (1983).CrossRefGoogle Scholar
  22. 22.
    V.H. Weiss, Z. Naturforsch. B 11a, 131 (1956).Google Scholar
  23. 23.
    Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar, and A.C. Gossard, J. Appl. Phys. 105, 054303 (2009).Google Scholar
  24. 24.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, J. Appl. Phys. 93, 793 (2003).CrossRefGoogle Scholar
  25. 25.
    D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
  26. 26.
    C.A. Paddock and G.L. Eesley, J. Appl. Phys. 60, 285 (1986).CrossRefGoogle Scholar
  27. 27.
    R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, and S.M. George, Science 303, 989–990 (2004).CrossRefGoogle Scholar
  28. 28.
    D. Young, C. Thomsen, and H. Grahn, Phonon Scattering in Condensed Matter V, ed. A.C. Anderson and J.P. Wolfe (Berlin: Springer, 1986), pp. 49–51.Google Scholar
  29. 29.
    A. Benninghoven, F.G. Rudenauer, and H.W. Erner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends (New York: Wiley, 1987), p. 1227.Google Scholar
  30. 30.
    R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry (New York: Wiley, 1989).Google Scholar
  31. 31.
    F.A. Stevie and R.G. Wilson, J. Vac. Sci. Technol. A 9, 3064 (1991).CrossRefGoogle Scholar
  32. 32.
    D.-Q. Yang and C.-Z. Fan, Chin. Phys. Lett. 15, 697 (1998).CrossRefGoogle Scholar
  33. 33.
    M.L. Yu and K. Mann, Phys. Rev. Lett. 57, 1476–1479 (1986).CrossRefGoogle Scholar
  34. 34.
    W.-K. Chu, J.W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (New York, NY: Academic, 1978).Google Scholar
  35. 35.
    T.D. Sands, C.J. Palmstrøm, J.B. Harbison, V.G. Keramidas, N. Tabatabaie, T.L. Cheeks, R. Ramesh, and Y. Silberberg, Mater. Sci. Rep. 5, 99–170 (1990).CrossRefGoogle Scholar
  36. 36.
    L.R. Doolittle, Nucl. Instrum. Methods B9, 344–351 (1985).Google Scholar
  37. 37.
    J.W. Butler, Nucl. Instrum. Methods B15, 232–237 (1986).Google Scholar
  38. 38.
    D.O. Klenov, J.M.O. Zide, J.D. Zimmerman, A.C. Gossard, and S. Stemmer, Appl. Phys. Lett. 86, 241901 (2005).CrossRefGoogle Scholar
  39. 39.
    S.J. Pennycook and D.E. Jesson, Ultramicroscopy 37, 14–38 (1991).CrossRefGoogle Scholar
  40. 40.
    P. Nellist and S.J. Pennycook, Ultramicroscopy 78, 111–124 (1999).CrossRefGoogle Scholar
  41. 41.
    R.F. Loane, P. Xu, and J. Silcox, Ultramicroscopy 40, 121–138 (1992).CrossRefGoogle Scholar
  42. 42.
    K. Shiraishi, Appl. Phys. Lett. 60, 1363–1365 (1992).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Peter G. Burke
    • 1
  • Trevor E. Buehl
    • 1
  • Pernot Gilles
    • 3
  • Hong Lu
    • 1
  • Ali Shakouri
    • 3
  • Chris J. Palmstrom
    • 1
    • 2
  • John E. Bowers
    • 2
  • Arthur C. Gossard
    • 1
    • 2
  1. 1.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Electrical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations