Journal of Electronic Materials

, Volume 41, Issue 6, pp 1713–1719

Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light

  • Mizue Mizoshiri
  • Masashi Mikami
  • Kimihiro Ozaki
  • Keizo Kobayashi
Article

Abstract

We demonstrated the fabrication of thin-film thermoelectric generators and evaluated their generation properties using solar light as a thermal source. Thin-film elements of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type), which were patterned using the lift-off technique, were deposited on glass substrates using radiofrequency magnetron sputtering. After annealing at 300°C, the average Seebeck coefficients of p- and n-type films were 150 μV/K and −104 μV/K, respectively, at 50°C to 75°C. A cylindrical lens was used to focus solar light to a line shape onto the hot side of the thin-film thermoelectric module with 15 pn junctions. The minimum width of line-shaped solar light was 0.8 mm with solar concentration of 12.5 suns. We studied the properties of thermoelectric modules with different-sized pn junctions on the hot side, and obtained maximum open voltage and power values of 140 mV and 0.7 μW, respectively, for a module with 0.5-mm pn junctions. The conversion efficiency was 8.75 × 10−4%, which was approximately equal to the value estimated by the finite-element method.

Keywords

Thermoelectric generator thin-film thermoelectric module lithography solar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.S. Hudak and G.G. Amatucci, J. Appl. Phys. 103, 101301 (2008).CrossRefGoogle Scholar
  2. 2.
    E.O. Torres and G.A. Rincon-Mara, J. Energy Eng. 134, 121 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Völklein, and T. Doll, Sens. Actuators A132, 325 (2006).CrossRefGoogle Scholar
  4. 4.
    G.J. Snyder, J.R. Lim, C.-K. Huang, and J.-P. Fleurial, Nat. Mater. 2, 528 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Takahashi, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Sens. Actuators A Phys. 138, 329 (2007).CrossRefGoogle Scholar
  6. 6.
    S.-D. Kwon, B.-K. Ju, S.-J. Yoon, and J.-S. Kim, J. Electron. Mater. 38, 920 (2009).CrossRefGoogle Scholar
  7. 7.
    E. Skoplaki and J.A. Palyvos, Sol. Energy 83, 614 (2009).CrossRefGoogle Scholar
  8. 8.
    R. Amatya and R.J. Ram, J. Electron. Mater. 39, 1735 (2010).CrossRefGoogle Scholar
  9. 9.
    P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang, and M. Niino, J. Electron. Mater. 39, 1522 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. MacEnanery, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Bourgault, C.G. Garampon, N. Caillault, L. Carbone, and J.A. Aymami, Thin Solid Films 516, 8579 (2008).CrossRefGoogle Scholar
  12. 12.
    I. Yashima, T. Sato, and Y. Toshio, J. Jpn. Ceram. Soc. 105, 152 (1997).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Mizue Mizoshiri
    • 1
  • Masashi Mikami
    • 1
  • Kimihiro Ozaki
    • 1
  • Keizo Kobayashi
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations