Journal of Electronic Materials

, Volume 41, Issue 6, pp 1735–1742

Organic Thermoelectric Materials Composed of Conducting Polymers and Metal Nanoparticles

  • Naoki Toshima
  • Nattha Jiravanichanun
  • Hiromasa Marutani
Article

Abstract

Organic thermoelectric materials consisting of conducting polymers have received much attention recently because of their advantages such as wide availability of carbon, easy syntheses, easy processing, flexible devices, low cost, and low thermal conductivity. Nevertheless, their thermoelectric performance is still not good enough for practical use. To improve their performance, we present herein new kinds of hybrids of organic conducting polymers and metal nanoparticles (NPs). Since hybridization of polyaniline with poly-(N-vinyl-2-pyrrolidone) (PVP)-protected Au NPs decreased the electrical conductivity of polyaniline films from 150 S cm−1 to 50 S cm−1, we carried out direct hybridization of polyaniline with Au NPs without PVP in this study. Direct hybridization improved the electrical conductivity to as high as 330 S cm−1 at 50°C while keeping the Seebeck coefficient at 15 μV m−1 K−2. Poly(3,4-ethylenedioxythiophene) (PEDOT) is another promising conducting polymer. Here, we used hybrid films of PEDOT with Au NPs protected by two kinds of ligands, terthiophenethiol and dodecanethiol (DT), revealing that the hybrid of PEDOT with DT-protected Au NPs showed better thermoelectric performance than pristine PEDOT without Au NPs. Addition of DT-protected Au NPs improved the electrical conductivity of the PEDOT films from 104 S cm−1 to 241 S cm−1 and the thermoelectric figure of merit from 0.62 × 10−2 to 1.63 × 10−2 at 50°C.

Keywords

Hybrid thermoelectric materials organic thermoelectric materials Au nanoparticles conducting polymer polyaniline PEDOT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Roncali, Chem. Rev. 92, 711 (1992).CrossRefGoogle Scholar
  2. 2.
    P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
  3. 3.
    H. Yan and N. Toshima, Chem. Lett. 1217 (1999).Google Scholar
  4. 4.
    H. Yan, N. Ohno, and N. Toshima, Chem. Lett. 392 (2000).Google Scholar
  5. 5.
    H. Yan, T. Ohta, and N. Toshima, Macromol. Mater. Eng. 286, 214 (2001).CrossRefGoogle Scholar
  6. 6.
    Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 156, 1341 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Hirsoshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).CrossRefGoogle Scholar
  8. 8.
    N. Toshima, M. Imai, and S. Ichikawa, J. Electron. Mater. 40, 898 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Shinohara, K. Ohara, Y. Imai, Y. Isoda, and H. Nakanishi, Int. Conf. Thermoelectr 22, 298 (2003).Google Scholar
  10. 10.
    Y. Shinohara, K. Hiraishi, H. Nakanishi, Y. Isoda, and Y. Imai, Trans. Mater. Res Soc. Jpn. 30, 963 (2005).Google Scholar
  11. 11.
    Y. Yuan, X. Liu, S. Desbief, P. Leclere, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, and X. Crispin, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 115454 (2010).CrossRefGoogle Scholar
  12. 12.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Janaky and C. Visy, Synth. Met. 158, 1009 (2008).CrossRefGoogle Scholar
  14. 14.
    Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano 4, 2445 (2010).CrossRefGoogle Scholar
  15. 15.
    B. Zhang, J. Sun, H.E. Katz, F. Fang, and R.L. Opila, ACS Appl. Mater. Interfaces 2, 3170 (2010).CrossRefGoogle Scholar
  16. 16.
    D.-Y. Kim, Y.-S. Kim, K.-W. Choi, J.C. Jaime, and C.-H. Yu, ACS Nano 4, 513 (2010).CrossRefGoogle Scholar
  17. 17.
    K.C. See, J.P. Feser, E. Cynthia, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano Lett. 10, 4664 (2010).CrossRefGoogle Scholar
  18. 18.
    L. Wang, D.-G. Wang, G.-M. Zhu, J.-Q. Li, and F. Pan, Mater. Lett. 65, 1086 (2011).CrossRefGoogle Scholar
  19. 19.
    C. Liu, F. Jiang, M. Huang, B. Lu, R. Yue, and J. Xu, J. Electron. Mater. 40, 948 (2011).CrossRefGoogle Scholar
  20. 20.
    Y. Wang, K. Cai, and X. Yao, ACS Appl. Mater. Interfaces 3, 1163 (2011).CrossRefGoogle Scholar
  21. 21.
    T. Teranishi, S. Hasegawa, T. Shimizu, and M. Miyake, Adv. Mater. 13, 1699 (2001).CrossRefGoogle Scholar
  22. 22.
    Y. Xia and J. Ouyang, J. Mater. Chem. 21, 4927 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Naoki Toshima
    • 1
  • Nattha Jiravanichanun
    • 1
  • Hiromasa Marutani
    • 1
  1. 1.Department of Applied ChemistryTokyo University of Science YamaguchiSanyoOnoda-shiJapan

Personalised recommendations