Advertisement

Journal of Electronic Materials

, Volume 41, Issue 6, pp 1414–1420 | Cite as

Effects of Excess Sb on Thermoelectric Properties of Barium and Indium Double-Filled Iron-Based p-Type Skutterudite Materials

  • Jian Yu
  • Wen-yu Zhao
  • Ping Wei
  • Ding-guo Tang
  • Qing-jie Zhang
Article

Abstract

A series of Ba and In double-filled iron-based p-type skutterudite thermoelectric (TE) materials with nominal composition BaInFe3.7Co0.3Sb12+m (0.72 ≤ m ≤ 2.4) have been prepared by melting, quenching, annealing, and spark plasma sintering (SPS) methods. The effects of excess Sb on the phase composition, microstructure, and TE transport properties of these materials were investigated in this work. All the SPS bulk materials are composed of the main skutterudite phase and trace InSb and FeSb2. The content of FeSb2 in the SPS bulk materials gradually decreased and that of InSb remained nearly invariable with increasing m. The impurities InSb and metallic Sb are found at grain boundaries. The amount of metallic Sb at grain boundaries gradually increased with increasing m. The excess Sb had no effect on the growth of grains. The dependence of the TE properties on m indicates that preventing the formation of FeSb2 by adjusting the excess Sb value may significantly improve the TE properties of Ba and In double-filled iron-based p-type skutterudite materials. The significant increases in the carrier concentration and electrical conductivity as well as the remarkable reduction in the lattice thermal conductivity of the sample with m = 0.96 are due to the significant reduction in the FeSb2 content induced by the excess Sb. The gradual increase in ZT with increasing m from 0.72 to 1.44 is attributed to the gradual decrease of the FeSb2 content, and the gradual decrease in ZT in the m range of 1.44 to 2.4 is due to the gradual increase of the Sb content in the Sb-In alloy impurity occurring at grain boundaries. The lowest lattice thermal conductivity of 0.31 W m−1 K−1 and the highest ZT value of 0.63 were obtained at 800 K for the sample with m = 1.44.

Keywords

Filled skutterudite Sb excess phase composition thermoelectric transport properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  3. 3.
    G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
  4. 4.
    D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
  5. 5.
    G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  6. 6.
    P.C. Zhai, W.Y. Zhao, Y. Li, L.S. Liu, X.F. Tang, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 89, 052111 (2006).CrossRefGoogle Scholar
  7. 7.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hiral, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, J. Appl. Phys. 97, 083712 (2005).CrossRefGoogle Scholar
  9. 9.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
  10. 10.
    G.S. Nolas, C.A. Kendziora, and H. Takizawa, J. Appl. Phys. 94, 7440 (2003).CrossRefGoogle Scholar
  11. 11.
    T. He, J.Z. Chen, H.D. Rosenfeld, and M.A. Subramanian, Chem. Mater. 18, 759 (2006).CrossRefGoogle Scholar
  12. 12.
    V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).CrossRefGoogle Scholar
  13. 13.
    Q.M. Lu, J.X. Zhang, X. Zhang, Y.Q. Liu, D.M. Liu, and M.L. Zhou, J. Appl. Phys. 98, 106107 (2005).CrossRefGoogle Scholar
  14. 14.
    X.F. Tang, H. Li, Q.J. Zhang, M. Niino, and T. Goto, J. Appl. Phys. 100, 123702 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
  16. 16.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  17. 17.
    J.Y. Peng, P.N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard, and T.M. Tritt, J. Appl. Phys. 104, 053710 (2008).CrossRefGoogle Scholar
  18. 18.
    J.Y. Peng, J. He, P.N. Alboni, and T.M. Tritt, J. Electron. Mater. 38, 981 (2009).CrossRefGoogle Scholar
  19. 19.
    X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  20. 20.
    W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
  22. 22.
    J.P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, and G.P. Meisner, Proceeding of the 15th International Conference on Thermoelectrics (Pasadena, CA: IEEE, 1996), p. 91.Google Scholar
  23. 23.
    G. Rogl, A. Grysiv, P. Rogl, E. Bauer, M.B. Kerber, M. Zehetbauer, and S. Puchegger, Intermetallics 18, 2435 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2011).CrossRefGoogle Scholar
  25. 25.
    D. Bérardan, E. Alleno, C. Godart, M. Puyet, B. Lenoir, R. Lackber, E. Bauer, L. Girard, and D. Ravot, J. Appl. Phys. 98, 033710 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Bao, J. Yang, J. Peng, W. Zhu, X. Fan, and X. Song, J. Alloys Compd. 421, 105 (2006).CrossRefGoogle Scholar
  27. 27.
    K. Yang, H. Cheng, H.H. Hang, J. Ma, J.L. Mi, X.B. Zhao, T.J. Zhu, and Y.B. Zhang, J. Alloys Compd. 467, 528 (2009).CrossRefGoogle Scholar
  28. 28.
    K.H. Park, J.Y. Jung, S.C. Ur, and I.H. Kim, J. Electron. Mater. 39, 1750 (2010).CrossRefGoogle Scholar
  29. 29.
    P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).CrossRefGoogle Scholar
  30. 30.
    R. Liu, X. Chen, P. Qiu, J. Liu, J. Yang, X. Huang, and L. Chen, J. Appl. Phys. 109, 023719 (2011).CrossRefGoogle Scholar
  31. 31.
    M.L. Liu, I.W. Chen, F.Q. Huang, and L.D. Chen, Adv. Mater. 21, 3808 (2009).CrossRefGoogle Scholar
  32. 32.
    W.Y. Zhao, C.L. Dong, P. Wei, W. Guan, L.S. Liu, P.C. Zhai, X.F. Tang, and Q.J. Zhang, J. Appl. Phys. 102, 113708 (2007).CrossRefGoogle Scholar
  33. 33.
    J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Jian Yu
    • 1
  • Wen-yu Zhao
    • 1
  • Ping Wei
    • 1
  • Ding-guo Tang
    • 1
  • Qing-jie Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations