Journal of Electronic Materials

, Volume 41, Issue 5, pp 837–844 | Cite as

Synthesis of Ge1−xSnx Alloy Thin Films Using Ion Implantation and Pulsed Laser Melting (II-PLM)

  • A. Bhatia
  • W.M. Hlaing Oo
  • G. Siegel
  • P.R. Stone
  • K.M. Yu
  • M.A. Scarpulla


Ge1−xSnx thin films are interesting for all-group-IV optoelectronics because of a crossover to a direct bandgap with dilute Sn alloying. However, Sn has vanishing room-temperature equilibrium solubility in Ge, making their synthesis very challenging. Herein, we report on our attempts to synthesize Ge1−xSnx films on Ge (001) using ion implantation and pulsed laser melting (II-PLM). A maximum of 2 at.% Sn was incorporated with our experimental conditions in the samples as determined by Rutherford back scattering spectroscopy. A red-shift in the Ge optical phonon branch and increased absorption below the Ge bandgap with increasing Sn concentration indicate Sn-induced lattice- and band-structure changes after II-PLM. However, ion-channeling and electron microscopy show that the films are not of sufficient epitaxial quality for use in devices.


Ge1−xSnx alloy pulsed laser melting (PLM) ion implantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Huo (PhD thesis, Stanford University, 2010).Google Scholar
  2. 2.
    G. He and H.A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).CrossRefGoogle Scholar
  3. 3.
    J. Kouvetakis, J. Menendez, and A.V.G. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Groves and W. Paul, Phys. Rev. Lett. 11, 194 (1963).CrossRefGoogle Scholar
  5. 5.
    D.W. Jenkins and J.D. Dow, Phys. Rev. B 36, 7994 (1987).CrossRefGoogle Scholar
  6. 6.
    K.A. Mader, A. Baldereschi, and H. von Kanel, Solid State Commun. 69, 1123 (1989).CrossRefGoogle Scholar
  7. 7.
    V.R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, Semicond. Sci. Technol. 24, 115006 (8 pp) (2009).Google Scholar
  8. 8.
    W. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 4th ed. (New York: McGraw-Hill, 2006).Google Scholar
  9. 9.
    Y. Feutelais, B. Legendre, and S. Fries, Calphad 20, 109 (1996).CrossRefGoogle Scholar
  10. 10.
    R. Ragan and H.A. Atwater, Appl. Phys. Lett. 77, 3418 (2000).CrossRefGoogle Scholar
  11. 11.
    R. Ragan, K.S. Min, and H.A. Atwater, Mater. Sci. Eng. B 87, 204 (2001).CrossRefGoogle Scholar
  12. 12.
    J. Taraci, J. Tolle, J. Kouvetakis, M.R. McCartney, D.J. Smith, J. Menendez, and M.A. Santana, Appl. Phys. Lett. 78, 3607 (2001).CrossRefGoogle Scholar
  13. 13.
    J. Taraci, S. Zollner, M.R. McCartney, J. Menendez, M.A. Santana-Aranda, D.J. Smith, A. Haaland, A.V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, J. Am. Chem. Soc. 123, 10980 (2001).CrossRefGoogle Scholar
  14. 14.
    M. Bauer, J. Taraci, J. Tolle, A.V.G. Chizmeshya, S. Zollner, D.J. Smith, J. Menendez, C. Hu, and J. Kouvetakisa, Appl. Phys. Lett. 81, 2992 (2002).CrossRefGoogle Scholar
  15. 15.
    M.R. Bauer, J. Tolle, C. Bungay, A.V.G. Chizmeshya, D.J. Smith, J. Menendez, and J. Kouvetakis, Solid State Commun. 127, 355 (2003).CrossRefGoogle Scholar
  16. 16.
    S.F. Li, M.R. Bauer, J. Menendez, and J. Kouvetakis, Appl. Phys. Lett. 84, 867 (2004).CrossRefGoogle Scholar
  17. 17.
    R. Roucka, J. Tolle, C. Cook, A.V.G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Z.D. Chen, and S. Zollner, Appl. Phys. Lett. 86, 191912 (2005).CrossRefGoogle Scholar
  18. 18.
    V.R. D’Costa, J. Tolle, R. Roucka, C.D. Poweleit, J. Kouvetakis, and J. Menendez, Solid State Commun. 144, 240 (2007).CrossRefGoogle Scholar
  19. 19.
    H. Perez Ladron de Guevara, A.G. Rodrıguez, H. Navarro-Contreras, and M.A. Vidal, Appl. Phys. Lett. 84, 4532 (2004).CrossRefGoogle Scholar
  20. 20.
    J.W. Mayer, Electron Devices Meeting, 1973 International (1973), pp. 3–5.Google Scholar
  21. 21.
    M. Nastasi and J.W. Mayer, Ion Implantation and Synthesis of Materials., 1st ed. (Springer Series in Materials Science, 2006), pp. 63–75.Google Scholar
  22. 22.
    M.A. Scarpulla (PhD thesis, University of California, Berkeley, 2006).Google Scholar
  23. 23.
    R.F. Wood, C.W. White, and R.T. Young, Pulsed Laser Processing of Semiconductors (Orlando, FL: Academic, 1984).Google Scholar
  24. 24.
    M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, and M.C. Ridgway, Appl. Phys. Lett. 82, 1251 (2003).CrossRefGoogle Scholar
  25. 25.
    M.A. Scarpulla, B.L. Cardozo, R. Farshchi, W.M. Hlaing, M.D. McCluskey, K.M. Yu, and O.D. Dubon, Phys. Rev. Lett. 95, 207204 (2005).CrossRefGoogle Scholar
  26. 26.
    K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpulla, O.D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003).CrossRefGoogle Scholar
  27. 27.
    S. Oguz, W. Paul, T.F. Deutsch, B.-Y. Tsaur, and D.V. Murphy, Appl. Phys. Lett. 43, 848 (1983).CrossRefGoogle Scholar
  28. 28.
    J. Ziegler, SRIM: The Stopping Range of Ions in Matter [Software]. Accessed 15 Dec 2009.
  29. 29.
    T. Kim, M.R. Pillai, M.J. Aziz, M.A. Scarpulla, O.D. Dubon, K.M. Yu, J.W. Beeman, and M.C. Ridgway, J. Appl. Phys. 108, 013508 (2010).CrossRefGoogle Scholar
  30. 30.
    T.L. Alford, L.C. Feldman, and J.W. Mayer, Fundamentals of Nanoscale Film Analysis., 1st ed. (Springer Series, 2007), pp. 84–103.Google Scholar
  31. 31.
    J. Menendez, K. Sinha, H. Hochst, and M.A. Engelhardt, Appl. Phys. Lett. 57, 380 (1990).CrossRefGoogle Scholar
  32. 32.
    P. Moontragoon, Z. Ikonic, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • A. Bhatia
    • 1
  • W.M. Hlaing Oo
    • 1
  • G. Siegel
    • 1
  • P.R. Stone
    • 2
  • K.M. Yu
    • 2
  • M.A. Scarpulla
    • 1
    • 3
  1. 1.Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations