Journal of Electronic Materials

, Volume 41, Issue 6, pp 1442–1449 | Cite as

Four-Wire Resistance Measurements of a Bismuth Nanowire Encased in a Quartz Template Utilizing Focused Ion Beam Processing

  • Masayuki Murata
  • Hiroya Yamamoto
  • Fumiaki Tsunemi
  • Yasuhiro Hasegawa
  • Takashi Komine
Article

Abstract

Four-wire resistance measurements were performed using a bismuth nanowire, 750 nm in diameter, 1.96 mm in length, and encapsulated in a quartz template. One side of the quartz template was polished to allow focused ion beam (FIB) processing, and metal film layers were deposited on the polished side to form electrodes. Nanofabrication was employed to remove a selected portion of the quartz, and FIB processing was used to expose the surface of the bismuth nanowire. A local area of the bismuth wire was successfully exposed, and a carbon electrode was deposited on the bismuth wire in situ by a chemical reaction between the ion beam and phenanthrene gas. Additional carbon deposition on the initial carbon electrode was used to connect to a metal film on the quartz template. In total, four nanofabrications were performed on the bismuth wire to create the desired electrical contacts. The resistivity of the nanowire was measured by a four-wire method to be 1.29 μΩ m at 300 K, corresponding to that of bulk bismuth. The temperature dependence of the resistivity was also measured, and was qualitatively and quantitatively in good agreement with previous calculated and experimental results using other bismuth nanowires. The present results demonstrate the successful development of a technique to fabricate an electrode on a local area of a nanowire using FIB processing to form suitable electrical contacts.

Keywords

Bi nanowire four-wire method focused ion beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, Ge.G. Samsonidze, and G. Dresselhaus, Mater. Sci. Eng. C 23, 129 (2003).CrossRefGoogle Scholar
  3. 3.
    Y.-M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  4. 4.
    M. S. Dresselhaus, Proceedings of the Conference on the Physics of Semimetals and Narrow Gap Semiconductors (Dallas, 1970).Google Scholar
  5. 5.
    J.-P. Michenaud and J.-P. Issi, J. Phys. C 5, 3061 (1972).CrossRefGoogle Scholar
  6. 6.
    J. Heremans and C.M. Thrush, Phys. Rev. B 59, 12579 (1999).CrossRefGoogle Scholar
  7. 7.
    T.E. Huber and M.J. Graf, Phys. Rev. B 60, 16880 (1999).CrossRefGoogle Scholar
  8. 8.
    K. Liu, C.L. Chien, and P.C. Searson, Phys. Rev. B 58, 14681 (1998).CrossRefGoogle Scholar
  9. 9.
    Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, and J.P. Heremans, Appl. Phys. Lett. 76, 3944 (2000).CrossRefGoogle Scholar
  10. 10.
    A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).CrossRefGoogle Scholar
  11. 11.
    T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).CrossRefGoogle Scholar
  12. 12.
    S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J.-P. Minet, and J.-P. Issi, Nanotechnology 13, 653 (2002).CrossRefGoogle Scholar
  13. 13.
    W. Shim, J. Ham, K. Lee, W. Jeung, M. Johnson, and E. Lee, Nano Lett. 9, 18 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Hasegawa, Y. Ishikawa, H. Morita, T. Komine, H. Shirai, and H. Nakamura, J. Appl. Phys. 97, 083907 (2005).CrossRefGoogle Scholar
  16. 16.
    Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).CrossRefGoogle Scholar
  17. 17.
    Y. Hasegawa, H. Nakano, H. Morita, T. Komine, H. Okumura, and H. Nakamura, J. Appl. Phys. 102, 073701 (2007).CrossRefGoogle Scholar
  18. 18.
    H. Iwasaki, H. Morita, and Y. Hasegawa, Jpn. J. Appl. Phys. 47, 3576 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, Rev. Sci. Instrum. 76, 113902 (2005).CrossRefGoogle Scholar
  20. 20.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Appl. Phys. 105, 103715 (2009).CrossRefGoogle Scholar
  21. 21.
    Y. Hasegawa, M. Murata, D. Nakamura, and T. Komine, J. Appl. Phys. 106, 063703 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Murata, D. Nakamura, D. Nakamura, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1536 (2010).CrossRefGoogle Scholar
  25. 25.
    D. Nakamura, M. Murata, D. Nakamura, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1960 (2010).CrossRefGoogle Scholar
  26. 26.
    D. Nakamura, M. Murata, H. Yamamoto, Y. Hasegawa, and T. Komine, J. Appl. Phys. 110, 053702 (2011).CrossRefGoogle Scholar
  27. 27.
    Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 40, 1005 (2010).CrossRefGoogle Scholar
  28. 28.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  29. 29.
    T. Komine, M. Kuraishi, T. Teramoto, R. Sugita, Y. Hasegawa, M. Murata, and D. Nakamura, J. Electron. Mater. 39, 1606 (2010).CrossRefGoogle Scholar
  30. 30.
    Y. Ichige, T. Matsumoto, T. Komine, R. Sugita, T. Aono, M. Murata, D. Nakamura, and Y. Hasegawa, J. Electron. Mater. 40, 523 (2010).CrossRefGoogle Scholar
  31. 31.
    T. Matsumoto, Y. Ichige, T. Komine, R. Sugita, T. Aono, M. Murata, D. Nakamura, and Y. Hasegawa, J. Electron. Mater. 40, 1260 (2010).CrossRefGoogle Scholar
  32. 32.
    C.G. Gallo, B.S. Chandrasekher, and P.H. Shutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Masayuki Murata
    • 1
  • Hiroya Yamamoto
    • 1
  • Fumiaki Tsunemi
    • 1
  • Yasuhiro Hasegawa
    • 1
  • Takashi Komine
    • 2
  1. 1.Saitama UniversitySaitamaJapan
  2. 2.Ibaraki UniversityIbarakiJapan

Personalised recommendations