Journal of Electronic Materials

, Volume 41, Issue 7, pp 1907–1914 | Cite as

Disabling of Nanoparticle Effects at Increased Temperature in Nanocomposite Solders

  • Omid MokhtariEmail author
  • Ali Roshanghias
  • Roya Ashayer
  • Hiren R. Kotadia
  • Farzad Khomamizadeh
  • Amir H. Kokabi
  • Michael P. Clode
  • Mark Miodownik
  • Samjid H. Mannan
Open Access


The use of nanoparticles to control grain size and mechanical properties of solder alloys at high homologous temperature is explored. It is found that silica nanoparticles in the 100 nm range coated with 2 nm to 3 nm of gold can be dispersed within solders during the normal reflow soldering process, and that these particles are effective in hardening the solder and restricting dynamic grain growth during compression testing at low homologous temperature. As the homologous temperature increases towards 0.75, the effects of the nanoparticles on both mechanical properties and dynamical grain growth reduce, and by homologous temperatures of 0.86 the effects have completely disappeared. This behavior is explained by introducing the concept of an effective volume fraction of pinning nanoparticles, and the practical implications for using nanoparticles to control solder properties via Zener pinning at high homologous temperatures are discussed.


Nanocomposite solder grain boundary hot compression 



This work was funded by IeMRC under Grant Code SP/06/03/01 in collaboration with Henkel Loctite Adhesives Ltd., Sondex (now GE Infra, Energy), and NPL.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).CrossRefGoogle Scholar
  2. 2.
    J.J. Sundelin, S.T. Nurmi, T.K. Lepisto, and E.O. Ristolainen, J. Electron. Mater. 35, 1600 (2006).CrossRefGoogle Scholar
  3. 3.
    H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, and Z.D. Xia, J. Electron. Mater. 36, 766 (2007).CrossRefGoogle Scholar
  4. 4.
    S.W. Chen and C.A. Chang, J. Electron. Mater. 33, 1071 (2004).CrossRefGoogle Scholar
  5. 5.
    C.W. Hwang, K.S. Kim, and K. Suganuma, J. Electron. Mater. 32, 1249 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1998).CrossRefGoogle Scholar
  7. 7.
    K. Song and M. Aindow, Mater. Sci. Eng. A Struct. 479, 365 (2008).CrossRefGoogle Scholar
  8. 8.
    K.N. Chang, W.M. Feng, and L.Q. Chen, Acta Mater. 57, 5229 (2009).CrossRefGoogle Scholar
  9. 9.
    C.S. Smith, Trans. Am. Inst. Min. Metall. Eng. 175, 15 (1948).Google Scholar
  10. 10.
    Y.X. Liu and B.R. Patterson, Acta Mater. 44, 4327 (1996).CrossRefGoogle Scholar
  11. 11.
    P.M. Hazzledine and R.D.J. Oldershaw, Philos. Mag. A 61, 579 (1990).CrossRefGoogle Scholar
  12. 12.
    Y.W. Shi, J.P. Liu, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Mater. Sci. Mater. Electron. 19, 349 (2008).CrossRefGoogle Scholar
  13. 13.
    R. Ashayer, S.H. Mannan, and S. Sajjadi, Colloid Surf. A 329, 134 (2008).CrossRefGoogle Scholar
  14. 14.
    R. Ashayer, A. Cobley, O. Mokhtari, S.H. Mannan, S. Sajjadi, and T. Mason, ESTC 2008: 2nd Electronics System-Integration Technology Conference, Vols 1 and 2, Proceedings (2008), p. 929.Google Scholar
  15. 15.
    W. Stober, A. Fink, and E. Bohn, J. Colloid Interf. Sci. 26, 62 (1968).CrossRefGoogle Scholar
  16. 16.
    T. Pham, J.B. Jackson, N.J. Halas, and T.R. Lee, Langmuir 18, 4915 (2002).CrossRefGoogle Scholar
  17. 17.
    D.G. Duff, A. Baiker, and P.P. Edwards, Langmuir 9, 2301 (1993).CrossRefGoogle Scholar
  18. 18.
    O.M. Amirmajdi, R. Ashyer-Soltani, M.P. Clode, S.H. Mannan, Y.Q. Wang, E. Cabruja, and G. Pellegrini, IEEE Trans. Electron. Packag. Manuf. 32, 265 (2009).CrossRefGoogle Scholar
  19. 19.
    P. Bate, Acta Mater. 49, 1453 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Miodownik, J.W. Martin, and A. Cerezo, Philos. Mag. A 79, 203 (1999).CrossRefGoogle Scholar
  21. 21.
    K.N. Tu, Solder Joint Technology (New York: Springer, 2007).Google Scholar
  22. 22.
    M.J. Gore, M. Grujicic, G.B. Olson, and M. Cohen, Acta Metall. Mater. 37, 2849 (1989).CrossRefGoogle Scholar
  23. 23.
    Y.W. Shi, Y.F. Yan, J.P. Liu, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Electron. Mater. 38, 1866 (2009).CrossRefGoogle Scholar
  24. 24.
    J.A. Lee and G. Raynor, Proc. Phys. Soc. Lond. B 67, 737 (1954).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Omid Mokhtari
    • 1
    Email author
  • Ali Roshanghias
    • 2
  • Roya Ashayer
    • 1
  • Hiren R. Kotadia
    • 3
  • Farzad Khomamizadeh
    • 2
  • Amir H. Kokabi
    • 2
  • Michael P. Clode
    • 1
  • Mark Miodownik
    • 3
  • Samjid H. Mannan
    • 3
  1. 1.Materials Research Group, Division of EngineeringKing’s College LondonLondonUK
  2. 2.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  3. 3.Department of PhysicsKing’s College LondonLondonUK

Personalised recommendations