Advertisement

Journal of Electronic Materials

, Volume 41, Issue 5, pp 819–823 | Cite as

LaAlO3/SrTiO3 Epitaxial Heterostructures by Atomic Layer Deposition

  • Nick M. Sbrockey
  • Michael Luong
  • Eric M. Gallo
  • Jennifer D. Sloppy
  • Guannan Chen
  • Christopher R. Winkler
  • Stephanie H. Johnson
  • Mitra L. Taheri
  • Gary S. Tompa
  • Jonathan E. Spanier
Article

Abstract

Thin films of LaAlO3 were deposited on TiO2-terminated (100) SrTiO3 crystals by atomic layer deposition (ALD), using tris(iso-propylcyclopentadienyl)lanthanum and trimethyl aluminum precursors. Water was used as the oxidizer. The film composition was shown to be controlled by the ratio of La/Al precursor pulses during ALD, with near-stoichiometric LaAlO3 resulting at precursor pulse ratios of 4/1 to 5/1. Films near the stoichiometric LaAlO3 composition were shown to crystallize on subsequent annealing to form epitaxial LaAlO3/SrTiO3 heterostructures. Electrical characterization of these structures was done by two-terminal direct-current (DC) current–voltage scans at room temperature and under high-vacuum conditions. The results show electrical conductivity for the ALD-deposited epitaxial LaAlO3/SrTiO3 heterostructures, which turns on for thickness above four unit cells for the LaAlO3 film.

Keywords

LaAlO3 SrTiO3 heterostructures ALD epitaxial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ohtomo and H.Y. Hwang, Nature 427, 423 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, and J. Mannhart, Science 313, 1942 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Huijben, G. Rijnders, D.A. Blank, S. Bals, S. Van Aert, J. Verbeeck, G. Van Tendeloo, A. Brinkman, and H. Hilgenkamp, Nat. Mater. 5, 556 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Reyren, S. Thiel, A.D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Gariglio, N. Reyren, A.D. Caviglia, and J.-M. Triscone, J. Phys. 21, 164213 (2009).Google Scholar
  6. 6.
    J. Mannhart, D.H.A. Blank, H.Y. Hwang, A.J. Millis, and J.-M. Triscone, MRS Bull. 33, 1027 (2008).CrossRefGoogle Scholar
  7. 7.
    J. Mannhart and D.G. Schlom, Science 327, 1607 (2010).CrossRefGoogle Scholar
  8. 8.
    P. Irvin, Y. Ma, D.F. Bogorin, C. Cen, C.W. Bark, C.M. Folkman, C.-B. Eom, and J. Levy, Nat. Photon. 4, 849 (2010).CrossRefGoogle Scholar
  9. 9.
    A. Fragneto, G.M. De Luca, R. Di Capua, U. Scotti di Uccio, M. Salluzzob, X. Torrelles, T.-L. Lee, and J. Zegenhagen, Appl. Phys. Lett. 91, 101910 (2007).CrossRefGoogle Scholar
  10. 10.
    G. Koster, B.L. Kropman, G.J.H.M. Rijnders, D.H.A. Blank, and H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998).CrossRefGoogle Scholar
  11. 11.
    M.D. Groner, J.W. Elam, F.H. Fabreguette, and S.M. George, Thin Solid Films 413, 186 (2002).CrossRefGoogle Scholar
  12. 12.
    M.D. Halls and K. Raghavachari, J. Chem. Phys. 118, 10221 (2003).CrossRefGoogle Scholar
  13. 13.
    S.Y. Kim, H. Kwon, S.J. Jo, J.S. Ha, W.T. Park, D.K. Kang, and B.-H. Kim, Appl. Phys. Lett. 90, 103104 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Roeckerath, T. Heeg, J. Lopes, J. Schubert, S. Mantl, A. Besmehn, P. Myllymaki, and L. Niinisto, Thin Solid Films 517, 201 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonena, and L. Niinisto, J. Mater Chem. 11, 2340 (2001).CrossRefGoogle Scholar
  16. 16.
    X.L. Li, D. Tsoutsou, G. Scarel, C. Wiemer, S.C. Capelli, S.N. Volkos, L. Lamagna, and M. Fanciulli, J. Vac. Sci. Technol. A 27, L1 (2009).CrossRefGoogle Scholar
  17. 17.
    D. Tsoutsou, L. Lamagna, S.N. Volkos, A. Molle, S. Baldovino, S. Schamm, P.E. Coulon, and M. Fanciulli, Appl. Phys. Lett. 94, 053504 (2009).CrossRefGoogle Scholar
  18. 18.
    J.M. Gaskell, A.C. Jones, H.C. Aspinall, S. Taylor, P. Taechakumput, P.R. Chalker, P.N. Heys, and R. Odedra, Appl. Phys. Lett. 91, 112912 (2007).CrossRefGoogle Scholar
  19. 19.
    B.S. Lim, A. Rahtu, P. de Rouffignac, and R.G. Gordon, Appl. Phys. Lett. 84, 3957 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Abermann, O. Bethge, C. Henkel, and E. Bertagnolli, Appl. Phys. Lett. 94, 262904 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Wang, J.-J. Wang, R. Gordon, J.-S.M. Lehn, H. Li, D. Hong, and D.V. Shenaic, Electrochem. Solid State Lett. 12, G13 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Basletic, J.-L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, é. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthélémy, Nat. Mater. 7, 621 (2008).CrossRefGoogle Scholar
  23. 23.
    G. Herranz, M. Basletic, M. Bibes, C. Carretero, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.-M. Broto, A. Barthelemy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Nick M. Sbrockey
    • 1
  • Michael Luong
    • 1
  • Eric M. Gallo
    • 2
  • Jennifer D. Sloppy
    • 2
  • Guannan Chen
    • 2
  • Christopher R. Winkler
    • 2
  • Stephanie H. Johnson
    • 2
  • Mitra L. Taheri
    • 2
  • Gary S. Tompa
    • 1
  • Jonathan E. Spanier
    • 2
  1. 1.Structured Materials Industries, Inc.PiscatawayUSA
  2. 2.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations