Journal of Electronic Materials

, Volume 41, Issue 5, pp 887–894 | Cite as

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

  • Benjamin M. Curtin
  • Eugene W. Fang
  • John E. Bowers


The fabrication and characterization of silicon nanowire (NW) array/spin-on glass (SOG) composite films for thermoelectric devices are presented. Interference lithography was used to pattern square lattice photoresist templates over entire 2 cm × 2 cm n-type Si substrates. The photoresist pattern was transferred to a SiO2 hard mask for a single-step deep reactive ion Si etch. The resulting Si NW arrays were 1 μm tall with 15% packing density, and the individual NWs had diameters of 80 nm to 90 nm with vertical sidewalls. The Si NW arrays were embedded in SOG to form a dense and robust composite material for device fabrication and thin-film characterization. The thermal conductivity of the Si NW/SOG composite film was measured to be a constant 1.45 ± 0.2 W/m-K from 300 K to 450 K. An effective medium model was then used to extract a thermal conductivity of 7.5 ± 1.7 W/m-K for the Si nanowires from the measured Si NW/SOG values. The cross-plane Seebeck coefficient of the Si NWs was measured to be −284 ± 26 μV/K, which is comparable to −310 μV/K for bulk Si. Power generation from the combined Si NW/SOG and substrate devices is also presented, and the maximum generated power was found to be 29.3 μW with ΔT of 56 K for a 50 μm × 50 μm device.


Silicon nanowires thermoelectrics cross-plane measurements nanowire composite interference lithography power generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.E. Brinson and W. Dunstant, J. Phys. C: Solid State Phys. 3, 483 (1970).CrossRefGoogle Scholar
  2. 2.
    L. Weber and E. Gmelin, Appl. Phys. A: Solids Surf. 53, 136 (1991).CrossRefGoogle Scholar
  3. 3.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  4. 4.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, and W.A. Goddard, Nature 451, 168 (2008).CrossRefGoogle Scholar
  5. 5.
    J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J.R. Heath, Nat. Nanotechnol. 5, 718 (2010).CrossRefGoogle Scholar
  6. 6.
    P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).CrossRefGoogle Scholar
  8. 8.
    R.G. Mathur, R.M. Mehra, and P.C. Mathur, J. Appl. Phys. 83, 5855 (1998).CrossRefGoogle Scholar
  9. 9.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).CrossRefGoogle Scholar
  10. 10.
    A.R. Abramson, W.C. Kim, S.T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C.-L. Tien, and P. Yang, J. Microelectromech. Syst. 13, 505 (2004).CrossRefGoogle Scholar
  11. 11.
    D. Dávila, A. Tarancón, D. Kendig, M. Fernández-Regúlez, N. Sabaté, M. Salleras, C. Calaza, C. Cané, I. Gràcia, E. Figueras, J. Santander, A. San Paulo, A. Shakouri, and L. Fonseca, J. Electron. Mater. 40, 851 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Li, K. Buddharaju, N. Singh, G. Lo, and S. Lee, IEEE Electron Dev. Lett. 32, 674 (2011).CrossRefGoogle Scholar
  13. 13.
    J. de Boor, N. Geyer, J.V. Wittemann, U. Gösele, and V. Schmidt, Nanotechnology 21, 095302 (2010).CrossRefGoogle Scholar
  14. 14.
    Y.-J. Hung, S.-L. Lee, Y.-T. Pan, B.J. Thibeault, and L.A. Coldren, J. Vac. Sci. Technol. B 28, 1030 (2010).CrossRefGoogle Scholar
  15. 15.
    W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C.V. Thompson, and M.H. Hong, Nano Lett. 8, 3799 (2008).CrossRefGoogle Scholar
  16. 16.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).CrossRefGoogle Scholar
  17. 17.
    D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 6077 (1994).CrossRefGoogle Scholar
  18. 18.
    T. Tong and A. Majumdar, Rev. Sci. Instrum. 77, 104902 (2006).CrossRefGoogle Scholar
  19. 19.
    A.I. Persson, Y.K. Koh, D.G. Cahill, L. Samuelson, and H. Linke, Nano Lett. 9, 4484–4488 (2009).CrossRefGoogle Scholar
  20. 20.
    R.M. Costescu, A.J. Bullen, G. Matamis, K.E. O’Hara, and D.G. Cahill, Phys. Rev. B 65, 094205 (2002).CrossRefGoogle Scholar
  21. 21.
    S.M. Eichfeld, T.-T. Ho, C.M. Eichfeld, A. Cranmer, S.E. Mohney, T.S. Mayer, and J.M. Redwing, Nanotechnology 18, 315201 (2007).CrossRefGoogle Scholar
  22. 22.
    A. Chaudhry, V. Ramamurthi, E. Fong, and M.S. Islam, Nano Lett. 7, 1536 (2007).CrossRefGoogle Scholar
  23. 23.
    Y.E. Yaish, A. Katsman, G.M. Cohen, and M. Beregovsky, J. Appl. Phys. 109, 094303 (2011).CrossRefGoogle Scholar
  24. 24.
    P.M. Mayer and R.J. Ram, Nanoscale Microscale Thermophys. Eng. 10, 143 (2006).CrossRefGoogle Scholar
  25. 25.
    S.M. Woodruff, N.S. Dellas, B.Z. Liu, S.M. Eichfeld, T.S. Mayer, J.M. Redwing, and S.E. Mohney, J. Vac. Sci. Technol. B 26, 4 (2008).CrossRefGoogle Scholar
  26. 26.
    G. Chen, B. Yang, W.L. Liu, T. Borca-Tasciuc, D. Song, D. Achimov, M.S. Dresselhaus, J.L. Liu, and K. Wang, 20th International Conference on Thermoelectrics Proceedings 30 (2001).Google Scholar
  27. 27.
    H.H. Solak, J. Phys. D Appl. Phys. 39, R171 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Benjamin M. Curtin
    • 1
  • Eugene W. Fang
    • 1
  • John E. Bowers
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations