Advertisement

Journal of Electronic Materials

, Volume 41, Issue 6, pp 1305–1311 | Cite as

On the Interplay Between Electrical Conductivity and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires

  • Neophytos Neophytou
  • Hans Kosina
Article

Abstract

We analyze the effect of low dimensionality on the electrical conductivity (σ) and Seebeck coefficient (S) in ultra-narrow Si nanowires (NWs) by employing atomistic considerations for the electronic structures and linearized Boltzmann transport theory. We show that changes in the geometrical features of the NWs such as diameter and orientation mostly affect σ and S in two ways: (i) the distance of the band edges from the Fermi level (η F) changes, and (ii) quantum confinement in some cases strongly affects the effective mass of the subbands, which influences the conductivity of the NWs and η F. Changes in η F cause exponential changes in σ but linear changes in S. S seems to be only weakly dependent on the curvature of the bands, the strength of the scattering mechanisms, and the shape of the density of states function DOS(E), contrary to current view. Our results indicate that low dimensionality has a stronger influence on σ than on S due to the greater sensitivity of σ to η F. We identify cases where bandstructure engineering through confinement can improve σ without significantly affecting S, which can result in power factor improvements.

Keywords

Thermoelectric electrical conductivity Seebeck coefficient tight binding atomistic sp3d5s* Boltzmann transport silicon nanowire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.O. Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  4. 4.
    W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006).CrossRefGoogle Scholar
  5. 5.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).CrossRefGoogle Scholar
  6. 6.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  7. 7.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Samarat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  8. 8.
    T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).CrossRefGoogle Scholar
  9. 9.
    A.K. Buin, A. Verma, A. Svizhenko, and M.P. Anantram, Nano Lett. 8, 760 (2008).CrossRefGoogle Scholar
  10. 10.
    V.M. Fomin and P. Kratzer, Phys. Rev. B 82, 045318 (2010).CrossRefGoogle Scholar
  11. 11.
    N. Neophytou and H. Kosina, Nano Lett. 10, 4913 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Lee, F. Oyafuso, P. Von Allmen, and G. Klimeck, Phys. Rev. B 69, 045316 (2004).CrossRefGoogle Scholar
  13. 13.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  14. 14.
    N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).CrossRefGoogle Scholar
  15. 15.
    M.V. Fischetti, J. Appl. Phys. 89, 1232 (2001).CrossRefGoogle Scholar
  16. 16.
    M.V. Fischetti, Z. Ren, P.M. Solomon, M. Yang, and K. Rim, J. Appl. Phys. 94, 1079 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).CrossRefGoogle Scholar
  18. 18.
    A.K. Buin, A. Verma, and M.P. Anantram, J. Appl. Phys. 104, 053716 (2008).CrossRefGoogle Scholar
  19. 19.
    S.M. Goodnick, D.K. Ferry, C.W. Wilmsen, Z. Liliental, D. Fathy, and O.L. Krivanek, Phys. Rev. B 32, 8171 (1985).CrossRefGoogle Scholar
  20. 20.
    S. Jin, M.V. Fischetti, and T. Tang, J. Appl. Phys. 102, 83715 (2007).CrossRefGoogle Scholar
  21. 21.
    K. Uchida and S. Takagi, Appl. Phys. Lett. 82, 2916 (2003).CrossRefGoogle Scholar
  22. 22.
    T. Fang, A. Konar, H. Xing, and D. Jena, Phys. Rev. B 78, 205403 (2008).CrossRefGoogle Scholar
  23. 23.
    N. Neophytou, H. Kosina, and J. Electr, Materials 40, 753 (2011).Google Scholar
  24. 24.
    N. Neophytou, M. Wagner, H. Kosina, S. Selberherr, and J. Electr, Materials 39, 1902 (2010).Google Scholar
  25. 25.
    R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).CrossRefGoogle Scholar
  26. 26.
    N. Neophytou, S.G. Kim, G. Klimeck, and H. Kosina, J. Appl. Phys. 107, 113701 (2010).CrossRefGoogle Scholar
  27. 27.
    N. Neophytou, A. Paul, M.S. Lundstrom, and G. Klimeck, IEEE Trans. Electron. Dev. 55, 1286 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations