Journal of Electronic Materials

, Volume 41, Issue 6, pp 1662–1666 | Cite as

Thermoelectric Properties of TlGdQ2 (Q = Se, Te) and Tl9GdTe6

  • Cheriyedath Raj Sankar
  • Savitree Bangarigadu-Sanasy
  • Holger Kleinke

The ternary thallium chalcogenides TlGdQ2 (Q = Se, Te), and Tl9GdTe6 were synthesized, and their thermoelectric properties were evaluated. The chalcogenides TlGdQ2 are isostructural with TlSbQ2 (space group \( R\bar{3}m \)), adopting the α-NaFeO2 structure type, and Tl9GdTe6 is isostructural with Tl9BiTe6 (space group I4/mcm). TlGdSe2 was found to be a wide-bandgap semiconductor with rather high Seebeck coefficient and low electrical conductivity. The corresponding telluride TlGdTe2 behaves like a doped semiconductor, and possesses very low thermal conductivity at room temperature on the order of 0.5 W m−1 K−1, a property advantageous for thermoelectric applications. Tl9GdTe6 exhibits relatively high room-temperature electrical conductivity of around 850 Ω−1 cm−1 and a low Seebeck coefficient of 27 μV K−1, yielding a low power factor. Of these three compounds, TlGdTe2 exhibits the best thermoelectric properties, with maximum dimensionless figure of merit in the measured temperature regime of 0.5 at 550 K.


Thallium chalcogenide rare earth semiconductor thermoelectric figure of merit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2011_1846_MOESM1_ESM.docx (17 kb)
Three tables with atomic positions of TlGdSe2, TlGdTe2, and Tl9GdTe6. (DOCX 17 kb)


  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano. (Boca Raton, FL: CRC, Taylor & Francis, 2006).Google Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  3. 3.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Baxter, Z.X. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S. Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, and Y.Y. Wu, Energy Environ. Sci. 2, 559 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Kleinke, Chem. Mater. 22, 604 (2010).CrossRefGoogle Scholar
  6. 6.
    M.A. McGuire, T.K. Reynolds, and F.J. DiSalvo, Chem. Mater. 17, 2875 (2005).CrossRefGoogle Scholar
  7. 7.
    M.A. McGuire, T.J. Scheidemantel, J.V. Badding, and F.J. DiSalvo, Chem. Mater. 17, 6186 (2005).CrossRefGoogle Scholar
  8. 8.
    C.R. Sankar, S. Bangarigadu-Sanasy, A. Assoud, and H. Kleinke, J. Mater. Chem. 20, 7485 (2010).CrossRefGoogle Scholar
  9. 9.
    C.R. Sankar, S. Bangarigadu-Sanasy, A. Assoud, and H. Kleinke, Inorg. Chem. 50, 245 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Bangarigadu-Sanasy, C.R. Sankar, A. Assoud, and H. Kleinke, Dalton Trans. 40, 862 (2011).CrossRefGoogle Scholar
  11. 11.
    A.V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 376, 43 (2004).CrossRefGoogle Scholar
  13. 13.
    B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).CrossRefGoogle Scholar
  14. 14.
    S. Yamanaka, A. Kosuga, and K. Kurosaki, J. Alloys Compd. 352, 275 (2003).CrossRefGoogle Scholar
  15. 15.
    B.H. Yan, C.X. Liu, H.J. Zhang, C.Y. Yam, X.L. Qi, T. Frauenheim, and S.C. Zhang, Europhys. Lett. 90, 1 (2010).CrossRefGoogle Scholar
  16. 16.
    H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, and A. Bansil, Phys. Rev. Lett. 105, 036404 (2010).CrossRefGoogle Scholar
  17. 17.
    K. Kuroda, M. Ye, A. Kimura, S.V. Eremeev, E.E. Krasovskii, E.V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 146801 (2010).CrossRefGoogle Scholar
  18. 18.
    W.X. Feng, D. Xiao, J. Ding, and Y.G. Yao, Phys. Rev. Lett. 106, 016402 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Duczmal and L. Pawlak, J. Alloys Compd. 262, 316 (1997).CrossRefGoogle Scholar
  20. 20.
    A. Duczmal, E. Mosiniewicz-Szablewska, and S. Pokrzywnicki, Phys. Stat. Sol. 196a, 321 (2003).CrossRefGoogle Scholar
  21. 21.
    D.-Y. Chung, T.P. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 126, 6414 (2004).CrossRefGoogle Scholar
  22. 22.
    A.C. Larson and R.B. von Dreele, GSAS-General Structure Analysis System (Los Alamos, NM: Los Alamos National Laboratory, 2000).Google Scholar
  23. 23.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001).CrossRefGoogle Scholar
  24. 24.
    E.F. Hockings and J.G. White, Acta Crystallogr. 14, 328 (1961).CrossRefGoogle Scholar
  25. 25.
    R. Cerny, J.M. Joubert, Y. Filinchuk, and Y. Feutelais, Acta Crystallogr. C 58, i63 (2002).Google Scholar
  26. 26.
    X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  27. 27.
    H. Xu, K.M. Kleinke, T. Holgate, H. Zhang, Z. Su, T.M. Tritt, and H. Kleinke, J. Appl. Phys. 105, 053703/1 (2009).Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Cheriyedath Raj Sankar
    • 1
  • Savitree Bangarigadu-Sanasy
    • 1
  • Holger Kleinke
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations