Journal of Electronic Materials

, 40:2480

Metal-Assisted Chemical Etching Using Tollen’s Reagent to Deposit Silver Nanoparticle Catalysts for Fabrication of Quasi-ordered Silicon Micro/Nanostructures

Article

Abstract

Metal-assisted chemical etching (MacEtch) of semiconductor materials in HF/H2O2 solution using noble-metal particles as catalysts has gained much attention in the past few years due to its unique properties. In this work, nanoscale Ag particles were deposited on (100) and (111) surfaces of polished p-Si wafers through the silver-mirror reaction. Subsequently these wafers were etched in 1:1:1 (v:v:v) HF(49%):H2O2(30%):EtOH solution at ambient temperature and pressure for 12 h, producing a number of different quasi-ordered silicon micro/nanostructures. The resulting surface-modified wafers exhibited mixed micro- and nanostructures that are an inherent feature of the etch process; for example, steps appear on the sidewalls of crystallographically defined nanopores, because the catalytic Ag nanoparticles are convected as they transit the developing pore during the etching process. The resulting materials exhibited much reduced reflectivity, reaching a maximum of 3.7× reduction near 330 nm, which renders them of interest in potential applications such as back-reflector templates for deposition of thin-film solar cell materials.

Keywords

Metal-assisted chemical etching porous silicon nanopore antireflection 

Supplementary material

11664_2011_1771_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (DOC 4293 kb)

References

  1. 1.
    M. Spiegel, C. Gerhards, F. Huster, W. Jooss, P. Fath, and E. Bucher, Sol. Energy Mater. Sol. Cells 74, 175 (2002).CrossRefGoogle Scholar
  2. 2.
    L.A. Dobrzanski and A. Drygala, J. Mater. Process. Technol. 191, 228 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).CrossRefGoogle Scholar
  4. 4.
    W.A. Nositschka, O. Voigt, P. Manshanden, and H. Kurz, Sol. Energy Mater. Sol. Cells 80, 227 (2003).CrossRefGoogle Scholar
  5. 5.
    Y.F. Huang, Y.J. Jen, K.H. Chen, L.C. Chen, Nanoengineering: Fabrication, Properties, Optics, and Devices V, Vol. 7039 (2008).Google Scholar
  6. 6.
    K.S. Lee, M.H. Ha, J.H. Kim, and J.W. Jeong, Sol. Energy Mater. Sol. Cells 95, 66 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Chattopadhyay and P.W. Bohn, J. Appl. Phys. 96, 6888 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Chattopadhyay, X.L. Li, and P.W. Bohn, J. Appl. Phys. 91, 6134 (2002).CrossRefGoogle Scholar
  9. 9.
    X. Li and P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).CrossRefGoogle Scholar
  10. 10.
    X.L. Li, Y.W. Kim, P.W. Bohn, and I. Adesida, Appl. Phys. Lett. 80, 980 (2002).CrossRefGoogle Scholar
  11. 11.
    M. Matsumura, K. Tsujino, and Y. Nishimoto, Sol. Energy Mater. Sol. Cells 90, 100 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Koynov, M.S. Brandt, and M. Stutzmann, Appl. Phys. Lett. 88, 203107 (2006).CrossRefGoogle Scholar
  13. 13.
    B.K. Duan and P.W. Bohn, Analyst 135, 902 (2010).CrossRefGoogle Scholar
  14. 14.
    W. Chern, K.J. Yu, D. Chanda, J.C. Shin, J.A. Rogers, and X.L. Li, 2010 23rd Annual Meeting of the IEEE Photonics Society, Vol 718 (2010).Google Scholar
  15. 15.
    J. Zhu, Z.P. Huang, Y. Wu, H. Fang, N. Deng, and T.L. Ren, Nanotechnology 17, 1476 (2006).CrossRefGoogle Scholar
  16. 16.
    J. Zhu, K.Q. Peng, and Z.P. Huang, Adv. Mater. 16, 73 (2004).CrossRefGoogle Scholar
  17. 17.
    N. Fang, W. Chern, K. Hsu, I.S. Chun, B.P. de Azeredo, N. Ahmed, K.H. Kim, J.M. Zuo, P. Ferreira, and X.L. Li, Nano Lett. 10, 1582 (2010).CrossRefGoogle Scholar
  18. 18.
    C.P. Wong, O.J. Hildreth, and W. Lin, ACS Nano 3, 4033 (2009).CrossRefGoogle Scholar
  19. 19.
    K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, and J.H.J. Scott, Adv. Mater. 23, 659 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Bastide, C. Chartier, and C. Levy-Clement, Electrochim. Acta 53, 5509 (2008).CrossRefGoogle Scholar
  21. 21.
    J. Zhu, H. Fang, X.D. Li, S. Song, and Y. Xu, Nanotechnology 19, 255703 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Zhu, H. Fang, Y. Wu, and J.H. Zhao, Nanotechnology 17, 3768 (2006).CrossRefGoogle Scholar
  23. 23.
    Z.P. Huang, T. Shimizu, S. Senz, Z. Zhang, X.X. Zhang, W. Lee, N. Geyer, and U. Gosele, Nano Lett. 9, 2519 (2009).CrossRefGoogle Scholar
  24. 24.
    K. Nishioka, T. Sueto, and N. Saito, Appl. Surf. Sci. 255, 9504 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Yae, H. Tanaka, T. Kobayashi, N. Fukumuro, and H. Matsuda, Phys. Status Solidi C: Conf. Crit. Rev. 2, 3476 (2005).CrossRefGoogle Scholar
  26. 26.
    K.Q. Peng, H. Fang, J.J. Hu, Y. Wu, J. Zhu, Y.J. Yan, and S. Lee, Chem. Eur. J. 12, 7942 (2006).CrossRefGoogle Scholar
  27. 27.
    F.M. Liu and M. Green, J. Mater. Chem. 14, 1526 (2004).CrossRefGoogle Scholar
  28. 28.
    K.Q. Peng, A.J. Lu, R.Q. Zhang, and S.T. Lee, Adv. Funct. Mater. 18, 3026 (2008).CrossRefGoogle Scholar
  29. 29.
    S. Siggia and E. Segal, Anal. Chem. 25, 640 (1953).CrossRefGoogle Scholar
  30. 30.
    J.G. Allpress and J.V. Sanders, Surf. Sci. 7, 1 (1967).CrossRefGoogle Scholar
  31. 31.
    C.M. Wang, W.C. Ye, C.M. Shen, J.F. Tian, C. Hui, and H.J. Gao, Solid State Sci. 11, 1088 (2009).CrossRefGoogle Scholar
  32. 32.
    M. Matsumura, C.L. Lee, K. Tsujino, Y. Kanda, and S. Ikeda, J. Mater. Chem. 18, 1015 (2008).CrossRefGoogle Scholar
  33. 33.
    Lasaga AC (ed) Kinetic Theory in the Earth Sciences. (Princeton University Press, NJ, Princeton, 1998).Google Scholar
  34. 34.
    T. Hadjersi, N. Megouda, G. Piret, R. Boukherroub, and O. Elkechai, Appl. Surf. Sci. 255, 6210 (2009).CrossRefGoogle Scholar
  35. 35.
    K.C. Sahoo, Y.M. Li, and E.Y. Chang, IEEE Trans. Electron Dev. 57, 2427 (2010).CrossRefGoogle Scholar
  36. 36.
    T. Sato, T. Sugiura, M. Ohtsubo, S. Matsuno, and M. Konagai, Jpn. J. Appl. Phys. Part 1 46, 6796 (2007).CrossRefGoogle Scholar
  37. 37.
    D.P. Kim, Z.Y. Xiao, Y. Zhao, A.J. Wang, and J. Perumal, Lab Chip 11, 57 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA
  3. 3.Renewable Energy SchoolNorth China Electric Power UniversityBeijingPeople’s Republic of China
  4. 4.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations