Journal of Electronic Materials

, Volume 40, Issue 8, pp 1674–1678 | Cite as

ZnO/ZnSe/ZnTe Heterojunctions for ZnTe-Based Solar Cells



ZnO and ZnSe are proposed as n-type layers in ZnTe heterojunction diodes to overcome problems associated with the n-type doping of ZnTe. The structural properties and electrical characteristics of ZnO/ZnTe and ZnO/ZnSe/ZnTe heterojunctions grown by molecular beam epitaxy on (001) GaAs substrates are presented. ZnO shows a strong preference for c-plane (0001) orientation resulting in a nonepitaxial relationship and high density of rotational domains for growth on ZnTe (001). ZnSe/ZnTe structures demonstrate a (001) epitaxial relationship with high density of {111} stacking faults originating at the heterojunction interface. ZnO/ZnSe/ZnTe heterojunction diodes show excellent diode rectification and clear photovoltaic response with open-circuit voltage of V OC = 0.8 V.


II–VI semiconductors diodes defects solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
  2. 2.
    M.J. Keevers and M.A. Green, Sol. Energy Mater. Sol. Cells 41, 195 (1996).CrossRefGoogle Scholar
  3. 3.
    M.A. Green, Prog. Photovolt. Res. Appl. 9, 137 (2001).CrossRefGoogle Scholar
  4. 4.
    W. Wang, W. Bowen, S. Spanninga, S. Lin, and J. Phillips, J. Electron. Mater. 38, 119 (2009).CrossRefGoogle Scholar
  5. 5.
    K.M. Yu, W. Walukiewicz, J.W. Ager, D. Bour, R. Farshchi, O.D. Dubon, S.X. Li, I.D. Sharp, and E.E. Haller, Appl. Phys. Lett. 88, 92110 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Merita, T. Kramer, B. Mogwitz, B. Franz, A. Polity, and B.K. Meyer, Phys. Status Solidi C 4, 960 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Nabetani, T. Okuno, K. Aoki, T. Kato, T. Matsumoto, and T. Hirai, Phys. Status Solidi A 203, 2653 (2006).CrossRefGoogle Scholar
  8. 8.
    W. Wang, A. Lin, and J. Phillips, Appl. Phys. Lett. 95, 011103 (2009).CrossRefGoogle Scholar
  9. 9.
    W. Wang, A. Lin, J. Phillips, and W. Metzger, Appl. Phys. Lett. 95, 261107 (2009).CrossRefGoogle Scholar
  10. 10.
    J.D. Cuthbert and D.G. Thomas, Phys. Rev. 154, 763 (1967).CrossRefGoogle Scholar
  11. 11.
    J.H. Chang, T. Takai, B.H. Koo, J.S. Song, T. Handa, and T. Yao, Appl. Phys. Lett. 79, 785 (2001).CrossRefGoogle Scholar
  12. 12.
    I.W. Tao, M. Jurkovic, and W.I. Wang, Appl. Phys. Lett. 64, 1848 (1994).CrossRefGoogle Scholar
  13. 13.
    T. Tanaka, K.M. Yu, P.R. Stone, J.W. Beeman, O.D. Dubon, L.A. Reichertz, V.M. Kao, M. Nishio, and W. Walukiewicz, J. Appl. Phys. 108, 024502 (2010).CrossRefGoogle Scholar
  14. 14.
    P. Gashin, A. Fuchsia, T. Potlog, A.V. Simashkevich, and V. Leander, Sol. Energy Mater. Sol. Cells 46, 323 (1997).CrossRefGoogle Scholar
  15. 15.
    T.L. Chu, S.S. Chu, G. Chen, J. Britt, C. Ferekides, and C.Q. Wu, J. Appl. Phys. 71, 3865 (1992).CrossRefGoogle Scholar
  16. 16.
    W. Wang, A. Lin, and J.D. Phillips, J. Electron. Mater. 37, 1044 (2008).CrossRefGoogle Scholar
  17. 17.
    F. Tinjod, I.-C. Robin, R. André, K. Khenga, and H. Mariette, J. Alloys Compd. 371, 63 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations