Advertisement

Journal of Electronic Materials

, Volume 40, Issue 7, pp 1490–1500 | Cite as

Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets

  • Parisa Pour Shahid Saeed Abadi
  • D. D. L. ChungEmail author
Article

The performance of thermal interface materials in the form of core sheets coated on both sides with a thermal paste is numerically modeled by finite-element analysis. The paste is polyol-ester-based carbon black paste and serves to improve the conformability. Good agreement is found between modeling and experimental results that involve copper proximate surfaces sandwiching the thermal interface material. The core sheets are copper, aluminum, indium, and flexible graphite. Flexible graphite (made from exfoliated graphite) is advantageous in its low elastic modulus, whereas copper and aluminum foils are advantageous in their high thermal conductivity. Indium is advantageous in its low elastic modulus compared with copper or aluminum and in its high thermal conductivity compared with flexible graphite. Among the four types of core sheet with identical thickness, coated indium foil gives the best performance for the range of foil thickness of 6 μm to 112 μm for the case of smooth (0.01 μm roughness) proximate surfaces and 117 μm to 320 μm for the case of rough (15 μm roughness) proximate surfaces. Aluminum foil gives the best performance for the thickness range of 112 μm to 2000 μm in the case of smooth proximate surfaces. For thicknesses below these ranges, flexible graphite performs the best. For thicknesses above these ranges, copper foil performs the best.

Keywords

Thermal interface material thermal gap-filling material thermal paste thermal contact conductance finite-element modeling carbon black 

Nomenclature

qx

heat flow rate in the x direction (W)

qy

heat flow rate in the y direction (W)

k

thermal conductivity (W/m K)

A

area perpendicular to the heat flow direction (m2)

T

temperature (K)

x, y

distance in the horizontal and vertical directions (m)

AC

area of the 1 inch × 1 inch copper block (m2)

kC

thermal conductivity of copper (W/m K)

T1, T2, T3, T4

temperatures read by thermo couples 1 to 4 (K)

ΔT

temperature difference between T 1 and T 2 or between T 3 and T 4 (K)

TA

temperature at the top surface of the thermal interface material (K)

TD

temperature at the bottom surface of the thermal interface material (K)

dA

distance between thermocouples T 1 and T 2 (i.e., 25 mm)

dB

distance between thermocouple T 2 and the top surface of the thermal interface material (i.e., 5 mm)

dC

distance between thermocouples T 3 and T 4 (i.e., 25 mm)

dA

distance between thermocouple T 3 and the bottom surface of the thermal interface material (i.e., 5 mm)

θ

thermal resistivity (m2 K/W)

TCC

thermal contact conductance (W/m2 K)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lin and D.D.L. Chung, J. Mater. Sci. 42, 9245 (2007).CrossRefGoogle Scholar
  2. 2.
    C. Lin and D.D.L. Chung, Carbon 45, 2922 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Leong, Y. Aoyagi, and D.D.L. Chung, Carbon 44, 435 (2006).CrossRefGoogle Scholar
  4. 4.
    C. Leong, Y. Aoyagi, and D.D.L. Chung, J. Electron. Mater. 34, 1336 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Leong and D.D.L. Chung, Carbon 42, 2323 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Leong and D.D.L. Chung, Carbon 41, 2459 (2003).CrossRefGoogle Scholar
  7. 7.
    C. Lin, T.A. Howe, and D.D.L. Chung, J. Electron. Mater. 36, 659 (2007).CrossRefGoogle Scholar
  8. 8.
    T.A. Howe, C.-K. Leong, and D.D.L. Chung, J. Electron. Mater. 35, 1628 (2006).CrossRefGoogle Scholar
  9. 9.
    Y. Xu, C. Leong, and D.D.L. Chung, J. Electron. Mater. 36, 1181 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Huang, C. Liu, Y. Wu, and S. Fan, Adv. Mater. 17, 1652 (2005).CrossRefGoogle Scholar
  11. 11.
    C. Lin and D.D.L. Chung, J. Electron. Mater. 37, 1698 (2008).CrossRefGoogle Scholar
  12. 12.
    A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).CrossRefGoogle Scholar
  13. 13.
    P.P.S.S. Abadi, C.-K. Leong, and D.D.L. Chung, J. Electron. Mater. 38, 175 (2009).CrossRefGoogle Scholar
  14. 14.
    R. Prasher, Proc. IEEE 94, 1571 (2006).CrossRefGoogle Scholar
  15. 15.
    E.E. Marotta, S.J. Mazzuca, and J. Norley, IEEE Trans. Compon. Packag. Tech. 28, 102 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Shaikh, K. Lafdi, and E. Silverman, Carbon 45, 695 (2007).CrossRefGoogle Scholar
  17. 17.
    C.-P. Chiu, G.L. Solbrekken, and Y.D. Chung, Proceedings of the 13th IEEE Semiconductor Thermal Management and Management Symp. (Institute of Electrical and Electronics Engineers, 1997), p. 57.Google Scholar
  18. 18.
    R.A. Shaik, A.N. Beall, and A. Razani, Heat Transfer Eng. 22, 41 (2001).Google Scholar
  19. 19.
    K. Zhang, M.M.F. Yuen, N. Wang, J.Y. Miao, D.G.W. Xiao, and H.B. Fan, Proc. 56th Electronic Components and Technology Conf. (San Diego, CA, 2006), p. 177.Google Scholar
  20. 20.
    R. Schacht, D. May, B. Wunderle, O. Wittler, A. Gollhardt, B. Michel, and H. Reichl, Proc. 12th Therminic 2006 (Nice, Côte d’Azur, France, 2006).Google Scholar
  21. 21.
    D.D.L. Chung, J. Mater. Sci. 39, 2645 (2004).CrossRefGoogle Scholar
  22. 22.
    R.L. Webb and J.P. Gwinn, Proc. ITherm (2002), p. 671.Google Scholar
  23. 23.
    F. Hua, C. Deppisch, and T. Fitzgerald, Adv. Microelectron. 16 (2006).Google Scholar
  24. 24.
    M.G. Cooper, B.B. Mike, and M.M. Yovanovich, Int. J. Heat Mass Trans. 12, 279 (1969).CrossRefGoogle Scholar
  25. 25.
    J.A. Greenwood and J.B.P. Williamson, Proc. R. Soc. Lond. A 295, 300 (1966).CrossRefGoogle Scholar
  26. 26.
    C. Lin and D.D.L. Chung, Carbon 47, 295 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Buch, Short Handbook of Metal Elements Properties and Elastic Properties of Pure Metals (Warsaw: Krzysztof Biesaga, 2005), pp. 35–42.Google Scholar
  28. 28.
    I. Michio and F.Y. Kang, Carbon Materials Science and Engineering—From Fundamentals to Applications (Beijing: Tsinghua University Press, 2006), p. 335.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Parisa Pour Shahid Saeed Abadi
    • 1
    • 2
  • D. D. L. Chung
    • 1
    Email author
  1. 1.Composite Materials Research LaboratoryUniversity at Buffalo, State University of New YorkBuffaloUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations