Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method

  • Wenhui Luo
  • Han Li
  • Fan Fu
  • Wen Hao
  • Xinfeng TangEmail author


Polycrystalline higher manganese silicides (HMS) Mn(Al x Si1−x )1.80 (x = 0 to 0.009) were prepared by a rapid melt-spinning process combined with a spark plasma sintering method (MS-SPS). The phase composition, microstructure, and thermoelectric properties of the bulk samples were investigated. X-ray diffraction (XRD) patterns showed that all samples possessed the HMS structure, but minor amounts of the MnSi phase could be observed from the backscattered electron images. When the Al content did not exceed the solid solubility limit, the electrical conductivity of Al-doped HMS increased dramatically, and the thermal conductivity decreased, as a result of the enhancement of phonon scattering due to an increased number of defects. In addition, the maximum ZT value of 0.65 was obtained at 850 K for the sample with x = 0.0015, whereas further increase in the Al content (x > 0.0015) significantly deteriorated the thermoelectric properties, mainly because the Al content exceeded its solid solubility limit in HMS.


Higher manganese silicides Al-doped melt-spinning thermoelectric properties 


  1. 1.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  2. 2.
    C.B. Vining, Nature 423, 391 (2003).CrossRefGoogle Scholar
  3. 3.
    D.T. Morelli, Thermoelectric Materials—New Directions and Approaches, Vol. 478, ed. T.M. Tritt (Warrendale: Materials Research Society, 1997), p. 297.Google Scholar
  4. 4.
    G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).CrossRefGoogle Scholar
  5. 5.
    X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  6. 6.
    A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 38, 1072 (2009).CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D 41, 185103 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Fedorov, V. Zaitsev, F. Solomkin, and M. Vedernikov, Tech. Phys. Lett. 23, 602 (1997).CrossRefGoogle Scholar
  9. 9.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook (Boca Raton: CRC, 2006).Google Scholar
  10. 10.
    A. Zhou, X. Zhao, T. Zhu, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Intermetallics 18, 2051 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Zhou, X. Zhao, T. Zhu, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Mater. Chem. Phys. 124, 1001 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Ye and S. Amelinckx, J. Solid State Chem. 61, 8 (1986).CrossRefGoogle Scholar
  13. 13.
    J.M. Higgins, A.L. Schmitt, I.A. Guzei, and S. Jin, J. Am. Chem. Soc. 130, 16086 (2008).CrossRefGoogle Scholar
  14. 14.
    U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, J. Alloys Compd. 361, 13 (2003).CrossRefGoogle Scholar
  15. 15.
    O. Schwomma, A. Preisinger, H. Nowotny, and A. Wittmann, Chem. Month 95, 1527 (1964).CrossRefGoogle Scholar
  16. 16.
    H. Knott, M. Mueller, and L. Heaton, Acta Crystallogr. 23, 549 (1967).CrossRefGoogle Scholar
  17. 17.
    G. Zwilling and H. Nowotny, Monat. Chem. 104, 668 (1973).CrossRefGoogle Scholar
  18. 18.
    I. Nishida, K. Masumoto, I. Kawasumi, and M. Sakata, J. Less-Common Met. 71, 293 (1980).CrossRefGoogle Scholar
  19. 19.
    I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Mater. Sci. 16, 355 (1981).CrossRefGoogle Scholar
  20. 20.
    T. Kojima, I. Nishida, and T. Sakata, J. Cryst. Growth 47, 589 (1979).CrossRefGoogle Scholar
  21. 21.
    I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).CrossRefGoogle Scholar
  22. 22.
    I. Aoyama, H. Kaibe, L. Rauscher, T. Kanda, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 4275 (2005).CrossRefGoogle Scholar
  23. 23.
    A.J. Zhou, T.J. Zhu, H.L. Ni, Q. Zhang, and X.B. Zhao, J. Alloys Compd. 455, 255 (2008).CrossRefGoogle Scholar
  24. 24.
    E. Groß, M. Riffel, and U. Stöhrer, J. Mater. Res. 10, 34 (1995).CrossRefGoogle Scholar
  25. 25.
    T. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Ohio: ASM International, 1990).Google Scholar
  26. 26.
    D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, and N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008).CrossRefGoogle Scholar
  27. 27.
    Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, and K. Yubuta, Phys. Rev. B 78, 214104 (2008).CrossRefGoogle Scholar
  28. 28.
    A. Zhou, T. Zhu, X. Zhao, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2009).CrossRefGoogle Scholar
  29. 29.
    H. Goldsmid, Electronic Refrigeration (London: Pion, 1986), pp. 29–63.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Wenhui Luo
    • 1
  • Han Li
    • 1
  • Fan Fu
    • 1
  • Wen Hao
    • 1
  • Xinfeng Tang
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations