Advertisement

Journal of Electronic Materials

, Volume 40, Issue 6, pp 1394–1402 | Cite as

Silver Nanoparticle Paste for Low-Temperature Bonding of Copper

  • Hani Alarifi
  • Anming Hu
  • Mustafa Yavuz
  • Y. Norman Zhou
Article

Silver nanoparticle (NP) paste was fabricated and used to bond copper wire to copper foil at low temperatures down to 160°C. The silver NP paste was developed by increasing the concentration of 50 nm silver NP sol from 0.001 vol.% to 0.1 vol.% by centrifugation. The 0.001 vol.% silver NP sol was fabricated in water by reducing silver nitrate (AgNO3) using sodium citrate dihydrate (Na3C6H5O7·2H2O). The bond was formed by solid-state sintering among the individual silver NPs and solid-state bonding of these silver NPs onto both copper wire and foil. Metallurgical bonds between silver NPs and copper were confirmed by transmission electron microscopy (TEM). The silver NPs were coated with an organic shell to prevent sintering at room temperature (RT). It was found that the organic shell decomposed at 160°C, the lowest temperature at which a bond could be formed. Shear tests showed that the joint strength increased as the bonding temperature increased, due to enhanced sintering of silver NPs at higher temperatures. Unlike low-temperature soldering techniques, bonds formed by our method have been proved to withstand temperatures above the bonding temperature.

Keywords

Ag nanoparticles sintering wire bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhou, eds., Microjoining and Nanojoining (Cambridge, UK: CRC/Woodhead, 2008).Google Scholar
  2. 2.
    Y. Zhou, A. Hu, M.I. Khan, W. Wu, B. Tam, and M. Yavuz, J. Phys. Conf. Ser. 165, 012021 (2009).CrossRefGoogle Scholar
  3. 3.
    H. Tatsumi, Y. Akada, T. Yamaguchi, and A. Hirose, Adv. Mater. Res. 26–28, 499 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Morita, Y. Yasuda, E. Ide, Y. Akada, and A. Hirose, Mater. Trans. 49, 2875 (2008).CrossRefGoogle Scholar
  5. 5.
    Z.Z. Fang and H. Wang, Int. Mater. Rev. 53, 326 (2008).CrossRefGoogle Scholar
  6. 6.
    K. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Yeadon, J. Yang, R. Averback, J. Bullard, and J. Gibson, Nanostruct. Mater. 10, 731 (1998).CrossRefGoogle Scholar
  8. 8.
    K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, and S. Stappert, Phys. Rev. Lett. 91, 106102 (2003).CrossRefGoogle Scholar
  9. 9.
    Q. Jiang, S.H. Zhang, and J.C. Li, Solid State Commun. 130, 581 (2004).CrossRefGoogle Scholar
  10. 10.
    R. German, Sintering Theory and Practice (New York, John Wiley & Sons, Inc, 1996), p. 70.Google Scholar
  11. 11.
    E. Ide, A. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  12. 12.
    Y. Akeda, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, and E. Ide, Mater. Trans. 49, 1537 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Morita, E. Ide, Y. Yasuda, A. Hirose, and K. Kobayashi, Jpn. J. Appl. Phys. 47, 6615 (2008).CrossRefGoogle Scholar
  14. 14.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Mater. Sci. Forum 512, 383 (2006).CrossRefGoogle Scholar
  15. 15.
    D. Wakuda, M. Hatamura, and K. Suganuma, Chem. Phys. Lett. 441, 305 (2007).CrossRefGoogle Scholar
  16. 16.
    D. Wakuda, K. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Technol. 32, 627 (2009).CrossRefGoogle Scholar
  17. 17.
    A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).CrossRefGoogle Scholar
  18. 18.
    D.V. Goia and E. Matijević, N. J. Chem. 22, 1203 (1998).CrossRefGoogle Scholar
  19. 19.
    P.C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).CrossRefGoogle Scholar
  20. 20.
    Y. Badr, M.G. Abd El Wahed, and M.A. Mahmoud, Appl. Surf. Sci. 253, 2502 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. Tan, Y. Li, and D. Zhu, J. Colloid Interf. Sci. 258, 244 (2003).CrossRefGoogle Scholar
  22. 22.
    R. Deegan, Phys. Rev. E 61, 475 (2000).CrossRefGoogle Scholar
  23. 23.
    H. Tada, J. Bronkema, and A.T. Bell, Catal. Lett. 92, 93 (2004).CrossRefGoogle Scholar
  24. 24.
    E.L. Force and A.T. Bell, J. Catal. 38, 440 (1975).CrossRefGoogle Scholar
  25. 25.
    L. Ding, R. Davidchack, and J. Pan, Comput. Mater. Sci. 45, 247 (2009).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics Engineering, Centre for Advanced Materials JoiningUniversity of WaterlooWaterlooCanada

Personalised recommendations