Advertisement

Journal of Electronic Materials

, Volume 40, Issue 5, pp 851–855 | Cite as

Planar Thermoelectric Microgenerators Based on Silicon Nanowires

  • D. DávilaEmail author
  • A. Tarancón
  • D. Kendig
  • M. Fernández-Regúlez
  • N. Sabaté
  • M. Salleras
  • C. Calaza
  • C. Cané
  • I. Gràcia
  • E. Figueras
  • J. Santander
  • A. San Paulo
  • A. Shakouri
  • L. Fonseca
Article

Abstract

Silicon nanowires have been implemented in microfabricated structures to develop planar thermoelectric microgenerators (μTEGs) monolithically integrated in silicon to convert heat flow from thermal gradients naturally present in the environment into electrical energy. The compatibility of typical microfabrication technologies and the vapor–liquid–solid (VLS) mechanism employed for silicon nanowire growth has been evaluated. Low-thermal-mass suspended structures have been designed, simulated, and microfabricated on silicon-on-insulator substrates to passively generate thermal gradients and operate as microgenerators using silicon nanowires as thermoelectric material. Both electrical measurements to evaluate the connectivity of the nanowires and thermoreflectance imaging to determine the heat transfer along the device have been employed.

Keywords

Microgenerator silicon nanowires thermoelectricity harvesting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Snyder, Thermoelectric Power Generation: Efficiency and Compatibility, ed. D.M. Rowe (Boca Ratón: CRC/Taylor and Francis, 2006)Google Scholar
  2. 2.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  3. 3.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  4. 4.
    A.I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Tarancón, D. Dávila, N. Sabaté, A. San Paulo, M. Fernández-Regúlez, and L. Fonseca, Patent ES1641.737 (2010).Google Scholar
  6. 6.
    S. Lemonnier, C. Goupil, J. Noudem, and E. Guilmeau, J. Appl. Phys. 104, 14505 (2008).CrossRefGoogle Scholar
  7. 7.
    T. Nemoto, T. Iida, J. Sato, Y. Oguni, A. Matsumoto, T. Miyata, T. Sakamoto, T. Nakajima, H. Taguchi, K. Nishio, and Y. Takanashi, J. Electron. Mater. 39, 9 (2010).CrossRefGoogle Scholar
  8. 8.
    A. San Paulo, N. Arellano, J.A. Plaza, R. He, C. Carraro, R. Maboudian, R.T. Howe, J. Bokor, and P. Yang, Nanoletters 7, 1100 (2007).Google Scholar
  9. 9.
    J. Christofferson and A. Shakouri, Rev. Sci. Instrum. 76, 24903 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, J. Christofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan, and P. Yang, IEEE Trans. Nanotechnol. 5, 67 (2006).CrossRefGoogle Scholar
  11. 11.
    J. Puigcorbé, D. Vogel, B. Michel, A. Vilà, I. Gràcia, C. Cané, and J.R. Morante, J. Micromech. Microeng. 13, 119 (2003).CrossRefGoogle Scholar
  12. 12.
    H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. De Ceuninck, and L. De Schepper, Sens. Actuat. B 65, 190 (2000).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • D. Dávila
    • 1
    Email author
  • A. Tarancón
    • 1
    • 2
  • D. Kendig
    • 3
  • M. Fernández-Regúlez
    • 1
  • N. Sabaté
    • 1
  • M. Salleras
    • 1
  • C. Calaza
    • 1
  • C. Cané
    • 1
  • I. Gràcia
    • 1
  • E. Figueras
    • 1
  • J. Santander
    • 1
  • A. San Paulo
    • 1
  • A. Shakouri
    • 3
  • L. Fonseca
    • 1
  1. 1.Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC)BarcelonaSpain
  2. 2.Department of Advanced Materials for Energy ApplicationsCatalonia Institute for Energy Research (IREC)BarcelonaSpain
  3. 3.Jack Baskin School of EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations