Skip to main content
Log in

Diffusive Thermoelectric Power in Highly Asymmetric Bilayer Graphene Nanoribbons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a simplified theoretical analysis of diffusive thermoelectric power (TEP) in a highly asymmetric bilayer graphene nanoribbon (BGN) within the framework of the tight binding formalism. BGN possesses two sets of subbands, the upper and the lower. We have shown that, for a highly asymmetric BGN (Δ = γ, where Δ and γ are the gap and interlayer coupling constant, respectively), the density of states in the lower set of subbands increases compared with the upper. The effect of ribbon width on the TEP under the aforementioned phonon scattering regime has also been quantitatively shown. The TEP exhibits an oscillatory dependence on ribbon width. Reflection coefficients of the carriers in both the upper and lower subbands have been treated in detail. Results of the ballistic formalism have been obtained as a special case in the present analyses under certain limiting conditions, forming an indirect validation of our theoretical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  2. A. Naeemi and J.D. Meindl, IEEE Trans. Electron. Dev. 56, 1822 (2009).

    Article  CAS  Google Scholar 

  3. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro, Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  4. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).

    Article  CAS  Google Scholar 

  5. E. McCann, Phys. Rev. B 74, 161403 (2006).

    Article  Google Scholar 

  6. R. Ma, L.J. Zhu, L. Sheng, M. Liu, and D.N. Sheng, Europhys. Lett. 87, 17009 (2009).

    Article  Google Scholar 

  7. E. McCann and V.I. Falko, Phys. Rev. Lett. 96, 086805 (2006).

    Article  Google Scholar 

  8. E.A. Henriksen, Z. Jiang, L.-C. Tung, M.E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H.L. Stormer, Phys. Rev. Lett. 100, 087403 (2008).

    Article  CAS  Google Scholar 

  9. E.H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449 (2008).

    Article  Google Scholar 

  10. S.S. Kubakaddi, Phys. Rev. B 79, 075417 (2008).

    Article  Google Scholar 

  11. M. Barbier, P. Vasilopoulos, F.M. Peeters, and J.M. Pereira Jr, Phys. Rev. B 79, 155402 (2009).

    Article  Google Scholar 

  12. M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

    Article  Google Scholar 

  13. B. Sahu, H. Min, A.H. MacDonald, and S.K. Banerjee, Phys. Rev. B 78, 045404 (2008).

    Article  Google Scholar 

  14. B.R. Nag, Electron Transport in Compound Semiconductors (Berlin: Springer, 1980).

    Google Scholar 

  15. D.K. Ferry, Semiconductor Transport (London: Taylor and Francis, 2000).

    Google Scholar 

  16. M.W. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).

    Book  Google Scholar 

  17. Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature 438, 201204 (2005).

    Google Scholar 

  18. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 1991219916 (2004).

    Google Scholar 

  19. B.E. Feldman, J. Martin, and A. Yacoby, Nat. Phys. Lett. 5, 889 (2009).

    Article  CAS  Google Scholar 

  20. L.A. Falkovsky, Phys. Lett. A 372, 51895192 (2008).

    Article  Google Scholar 

  21. P.J. Price, J. Appl. Phys. 53, 6863 (1982).

    Article  CAS  Google Scholar 

  22. R. Kimand and M. Lundstrom, IEEE Trans. Electron. Dev. 56, 132 (2009).

    Article  Google Scholar 

  23. J.P. McKelvey, R.L. Longini, and T.P. Brody, Phys. Rev. 123, 5157 (1961).

    Article  Google Scholar 

  24. J.S. Blakemore, Semiconductors Statistics (New York: Dover, 1987).

    Google Scholar 

  25. N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover, 1958).

    Google Scholar 

  26. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A.K. Sood, and A.C. Ferrari, Phys. Rev. B 79, 155417 (2009).

    Article  Google Scholar 

  27. Y. Ouyang, P. Campbell, and J. Guo, Appl. Phys. Lett. 92, 063120 (2008).

    Article  Google Scholar 

  28. S. Bhattacharya and S. Mahapatra, Phys. Lett. A 374, 2850 (2010).

    Article  CAS  Google Scholar 

  29. N. Harada, M. Ohfuti, and Y. Awano, Appl. Phys. Exp. 1, 024002 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Mallik, R.C. Diffusive Thermoelectric Power in Highly Asymmetric Bilayer Graphene Nanoribbons. J. Electron. Mater. 40, 1181–1189 (2011). https://doi.org/10.1007/s11664-011-1585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1585-1

Keywords

Navigation