Journal of Electronic Materials

, Volume 40, Issue 5, pp 1271–1280

Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides

  • Chunlei Wan
  • Yifeng Wang
  • Ning Wang
  • Wataru Norimatsu
  • Michiko Kusunoki
  • Kunihito Koumoto


A natural superlattice with composition (SnS)1.2(TiS2)2, built by intercalating a SnS layer into the van der Waals gap of layered TiS2, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)1.2(TiS2)2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)1+x(TX2)n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.


Natural superlattice thermoelectric misfit-layer compounds thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).CrossRefGoogle Scholar
  3. 3.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  4. 4.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  5. 5.
    B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  6. 6.
    A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  7. 7.
    J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S. Il Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).CrossRefGoogle Scholar
  8. 8.
    D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
  9. 9.
    C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Science 315, 351 (2007).CrossRefGoogle Scholar
  10. 10.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  11. 11.
    F.J. DiSalvo, Science 285, 703 (1999).CrossRefGoogle Scholar
  12. 12.
    Y.K. Koh, C.J. Vineis, S.D. Calawa, M.P. Walsh, and D.G. Cahill, Appl. Phys. Lett. 94, 153101 (2009).CrossRefGoogle Scholar
  13. 13.
    H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).CrossRefGoogle Scholar
  14. 14.
    G.A. Wiegers, Prog. Solid State Chem. 24, 1 (1996).CrossRefGoogle Scholar
  15. 15.
    Y. Miyazaki, H. Ogawa, and T. Kajitani, Jpn. J. Appl. Phys. 43, L1202 (2004).CrossRefGoogle Scholar
  16. 16.
    C. Heideman, N. Nyugen, J. Hanni, Q. Lin, S. Duncombe, D.C. Johnson, and P. Zschack, J. Solid State Chem. 181, 1701 (2008).CrossRefGoogle Scholar
  17. 17.
    C. Chiritescu, D.G. Cahill, C. Heideman, Q.Y. Lin, C. Mortensen, N.T. Nguyen, D. Johnson, R. Rostek, and H. Bottner, J. Appl. Phys. 104, 033533 (2008).CrossRefGoogle Scholar
  18. 18.
    Y. Oosawa, Y. Gotoh, and M. Onoda, Chem. Lett. 52, 3 (1989).Google Scholar
  19. 19.
    C.M. Fang, R.A. deGroot, G.A. Wiegers, and C. Haas, J. Phys.-Condens. Mater. 8, 1663 (1996).CrossRefGoogle Scholar
  20. 20.
    G.A. Wiegers, A. Meetsma, J.L. Deboer, S. Vansmaalen, and R.J. Haange, J. Phys.-Condens. Mater. 3, 2603 (1991).CrossRefGoogle Scholar
  21. 21.
    C. Auriel, A. Meerschaut, R. Roesky, and J. Rouxel, Eur. J. Solid State Inorg. Chem. 29, 1079 (1992).Google Scholar
  22. 22.
    A. Meerschaut, C. Auriel, and J. Rouxel, J. Alloys Compd. 183, 129 (1992).CrossRefGoogle Scholar
  23. 23.
    A. Meerschaut, L. Guemas, C. Auriel, and J. Rouxel, Eur. J. Solid State Inorg. Chem. 27, 557 (1990).Google Scholar
  24. 24.
    P.C. Klipstein, A.G. Bagnall, W.Y. Liang, E.A. Marseglia, and R.H. Friend, J. Phys. C: Solid State 14, 4067 (1981).CrossRefGoogle Scholar
  25. 25.
    J.A. Wilson, Phys. Status Solidi B 86, 11 (1978).CrossRefGoogle Scholar
  26. 26.
    J.J. Barry, H.P. Hughes, P.C. Klipstein, and R.H. Friend, J. Phys. C: Solid State 16, 393 (1983).CrossRefGoogle Scholar
  27. 27.
    A. Meerschaut, Curr. Opin. Solid State Mater. Sci. 1, 250 (1996).CrossRefGoogle Scholar
  28. 28.
    H. Martinez, C. Auriel, D. Gonbeau, G. Pfister-Guillouzo, and A. Meerschaut, J. Electron. Spectrosc. Relat. Phenom. 95, 145 (1998).CrossRefGoogle Scholar
  29. 29.
    Y. Ohno, Phys. Rev. B 44, 1281 (1991).CrossRefGoogle Scholar
  30. 30.
    Y.K. Koh, Y. Cao, D.G. Cahill, and D. Jena, Adv. Funct. Mater. 19, 610 (2009).CrossRefGoogle Scholar
  31. 31.
    E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar
  32. 32.
    R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).CrossRefGoogle Scholar
  33. 33.
    D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature 390, 671 (1997).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Chunlei Wan
    • 1
    • 2
  • Yifeng Wang
    • 1
    • 2
  • Ning Wang
    • 1
  • Wataru Norimatsu
    • 2
    • 3
  • Michiko Kusunoki
    • 2
    • 3
  • Kunihito Koumoto
    • 1
    • 2
  1. 1.Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.CREST, Japan Science and Technology AgencyTokyoJapan
  3. 3.EcoTopia Science InstituteNagoya UniversityNagoyaJapan

Personalised recommendations