Journal of Electronic Materials

, Volume 40, Issue 5, pp 753–758 | Cite as

Thermoelectric Properties of Scaled Silicon Nanowires Using the sp 3 d  5 s*-SO Atomistic Tight-Binding Model and Boltzmann Transport

  • Neophytos NeophytouEmail author
  • Hans Kosina

As a result of suppressed phonon conduction, large improvements of the thermoelectric figure of merit, ZT, have been recently reported for nanostructures compared with the raw materials’ ZT values. It has also been suggested that low dimensionality can improve a device’s power factor as well, offering a further enhancement. In this work the atomistic sp 3 d 5 s*-spin–orbit-coupled tight-binding model is used to calculate the electronic structure of silicon nanowires (NWs). Linearized Boltzmann transport theory is applied, including all relevant scattering mechanisms, to calculate the electrical conductivity, the Seebeck coefficient, and the thermoelectric power factor. We examine n-type NWs of diameter 3 nm and 12 nm, in [100], [110], and [111] transport orientations, at different carrier concentrations. Using experimental values for the lattice thermal conductivity in NWs, the expected ZT value is computed. We find that, at room temperature, although scaling the diameter below 7 nm can be beneficial to the power factor due to band structure changes alone, at those dimensions enhanced phonon and surface roughness scattering (SRS) degrade the conductivity and reduce the power factor.


Thermoelectric conductivity tight binding atomistic sp3d5sBoltzmann transport Landauer Seebeck coefficient silicon nanowire ZT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J.-T. Kheli, J.-K. Yu, W.A.G. III, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  4. 4.
    W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006).CrossRefGoogle Scholar
  5. 5.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  6. 6.
    M. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gagna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  7. 7.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Samarat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Neophytou, A. Paul, M.S. Lundstrom, and G. Klimeck, IEEE Trans. Electron. Dev. 55, 1286 (2008).CrossRefGoogle Scholar
  9. 9.
    N. Neophytou, A. Paul, and G. Klimeck, IEEE Trans. Nanotechnol. 7, 710 (2008).CrossRefGoogle Scholar
  10. 10.
    G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).CrossRefGoogle Scholar
  11. 11.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  12. 12.
    N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr, J. Electron. Mater. 39, 1902 (2010).CrossRefGoogle Scholar
  13. 13.
    T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).CrossRefGoogle Scholar
  14. 14.
    G. Klimeck, S. Ahmed, B. Hansang, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, T.B. Boykin, and R. Rahman, IEEE Trans. Electron. Dev. 54, 2079 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Klimeck, S. Ahmed, N. Kharche, M. Korkusinski, M. Usman, M. Prada, and T.B. Boykin, IEEE Trans. Electron. Dev. 54, 2090 (2007).CrossRefGoogle Scholar
  16. 16.
    N. Neophytou, S.-G. Kim, G. Klimeck, and H. Kosina, J. Appl. Phys. 107, 113701 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).CrossRefGoogle Scholar
  18. 18.
    S. Jin, M.V. Fischetti, and T. Tang, J. Appl. Phys. 102, 83715 (2007).CrossRefGoogle Scholar
  19. 19.
    A.K. Buin, A. Verma, and M.P. Anantram, J. Appl. Phys. 104, 053716 (2008).CrossRefGoogle Scholar
  20. 20.
    T. Fang, A. Konar, H. Xing, and D. Jena, Phys. Rev. B 78, 205403 (2008).CrossRefGoogle Scholar
  21. 21.
    K. Uchida and K. Takagi, Appl. Phys. Lett. 82, 2916 (2003).Google Scholar
  22. 22.
    N. Neophytou and H. Kosina, Nano Lett. 10, 4913 (2010).CrossRefGoogle Scholar
  23. 23.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957).CrossRefGoogle Scholar
  24. 24.
    R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).CrossRefGoogle Scholar
  25. 25.
    D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).CrossRefGoogle Scholar
  26. 26.
    R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).CrossRefGoogle Scholar
  27. 27.
    T. Markussen, A.-P. Jauho, and M. Brandbyge, Nano Lett. 8, 3771 (2008).CrossRefGoogle Scholar
  28. 28.
    T.T.M. Vo, A.J. Williamson, and V. Lordi, Nano Lett. 8, 1111 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations