Advertisement

Journal of Electronic Materials

, Volume 40, Issue 6, pp 1428–1436 | Cite as

Cr-Doped III–V Nitrides: Potential Candidates for Spintronics

  • B. Amin
  • S. Arif
  • Iftikhar Ahmad
  • M. Maqbool
  • R. Ahmad
  • S. Goumri-Said
  • K. Prisbrey
Article

Studies of Cr-doped III–V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al0.75Cr0.25N, Ga0.75Cr0.25N, and In0.75Cr0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al0.75Cr0.25N and Ga0.75Cr0.25N are half-metallic dilute magnetic semiconductors while In0.75Cr0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III–V nitrides can be used in spintronics devices.

Keywords

Spintronics half-metals dilute magnetic alloys Cr-doped III–V nitrides DMS DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Tregger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  2. 2.
    I. Zutic, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  3. 3.
    I.I. Mazin, Appl. Phys. Lett. 77, 3000 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Kimura, S. Emura, K. Tokuda, Y.K. Zhou, S. Hasegawa, and H. Asahi, J. Cryst. Growth 311, 2046 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Jain, L. Kronik, J.R. Chelikowsky, and V.V. Godlevsky, Phys. Rev. B 64, 245205 (2001).CrossRefGoogle Scholar
  6. 6.
    C.M. Fang, G.A. de Wijs, and R.A. de Groot, J. Appl. Phys. 91, 8340 (2002).CrossRefGoogle Scholar
  7. 7.
    G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, and J.L. Jiang, Phys. Rev. B 75, 174442 (2007).CrossRefGoogle Scholar
  8. 8.
    B. Amin, I. Ahmad, and M. Maqbool, J. LightWave Tech. 28, 223 (2010).CrossRefGoogle Scholar
  9. 9.
    A.Y. Polyakov, M.B. Smirnov, A.V. Govorkov, R.M. Frazier, J.Y. Liefer, G.T. Thaler, C.R. Abernathy, S.J. Pearton, and J.M. Zavada, J. Vac. Sci. Technol. B 22, 2758 (2004).CrossRefGoogle Scholar
  10. 10.
    P.A. Anderson, R.J. Kinsey, and S.M. Durbin, J. Appl. Phys. 98, 043903 (2005).CrossRefGoogle Scholar
  11. 11.
    P. Rinke, M. Scheffler, A. Qteish, M. Winkelnkemper, D. Bimberg, and J. Neugebauer, Appl. Phys. Lett. 89, 161919 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. doi: 10.1063/1.3531996.
  13. 13.
    F. Litimein, B. Bouahafs, Z. Dridi, and P. Ruterana, New. J. Phys. 4, 64.1 (2002).CrossRefGoogle Scholar
  14. 14.
    R. de Paiva and R.A. Nogueira, J. Appl. Phys. 96, 6565 (2004).CrossRefGoogle Scholar
  15. 15.
    I. Petrov, E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, and J.E. Sundgren, Appl. Phys. Lett. 60, 2491 (1992).CrossRefGoogle Scholar
  16. 16.
    E.M. Guerrero, E.B. Almaric, L. Martinet, G. Feuillet, B. Daudin, H. Mariette, P. Holliger, C. Dubois, C.B. Chevallier, T. Chassagne, G. Ferro, and Y. Monteil, J. Appl. Phys. 91, 4983 (2002).CrossRefGoogle Scholar
  17. 17.
    H. Okumura, H. Hamaguchi, T. Koizumi, K. Balakrishnan, Y. Ishida, M. Arita, S. Chichibu, H. Nakanishi, T. Nagatomo, and S. Yoshida, J. Cryst. Growth 189, 390 (1998).CrossRefGoogle Scholar
  18. 18.
    G.P. Das, B.K. Rao, and P. Jena, Phys. Rev. B 68, 035207 (2003).CrossRefGoogle Scholar
  19. 19.
    L.M. Sandratskii, P. Bruno, and J. Kudrnovsky, Phys. Rev. B 69, 195203 (2004).CrossRefGoogle Scholar
  20. 20.
    E. Kulatov, H. Nakayama, H. Mariette, H. Ohta, and Y.A. Uspenskii, Phys. Rev. B 66, 045203 (2002).CrossRefGoogle Scholar
  21. 21.
    S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. van Schilfgaarde, M.R. McCartney, D.J. Smith, and N. Newman, Appl. Phys. Lett. 82, 3047 (2003).CrossRefGoogle Scholar
  22. 22.
    H.X. Liu, S.Y. Wu, R.K. Singh, L. Gu, D.J. Smith, N.R. Dilley, L. Montes, M.B. Simmonds, and N. Newman, Appl. Phys. Lett. 85, 4076 (2004).CrossRefGoogle Scholar
  23. 23.
    C. Ronning, P.X. Gao, Y. Dind, Z.L. Wang, and D. Schwen, Appl. Phys. Lett. 84, 783 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Kohn and L.S. Sham, Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
  25. 25.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  26. 26.
    A. Ayuela, J. Enkovaara, K.U. llakko, and R.M. Nieminen, J. Phys. Condens. Matter 11, 2017 (1999).CrossRefGoogle Scholar
  27. 27.
    K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).CrossRefGoogle Scholar
  28. 28.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K—An Augmented Plane Wave & Local Orbital Program for Calculating Crystal Properties (Wien, Austria: Techn. Universitat, 2001), ISBN: 3-9501031-1-1-2.Google Scholar
  29. 29.
    S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, Physica B 403, 3452 (2008).CrossRefGoogle Scholar
  30. 30.
    F. Birch, J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
  31. 31.
    P. Dufek, P. Blaha, V. Sliwko, and K. Schwarz, Phys. Rev. B 49, 10170 (1994).CrossRefGoogle Scholar
  32. 32.
    P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).CrossRefGoogle Scholar
  33. 33.
    B. Amin and I. Ahmad, J. Appl. Phys. 106, 093710 (2009).CrossRefGoogle Scholar
  34. 34.
    B. Amin, I. Ahmad, M. Maqbool, N. Ikram, Y. Saeed, A. Ahmad, and S. Arif, J. Alloy. Compd. 493, 212 (2010).CrossRefGoogle Scholar
  35. 35.
    M. Kaminska, A. Twardowski, and D. Wasik, J. Mater. Sci.: Mater. Electron. 19, 828 (2008).CrossRefGoogle Scholar
  36. 36.
    R. Frazier, G. Thaler, B.P. Gila, J. Stapleton, M.E. Overberg, C.R. Abernathy, S.J. Pearton, F. Ren, and J.M. Zavada, J. Electron. Mater. 34, 365 (2005).CrossRefGoogle Scholar
  37. 37.
    C. Zhang and S. Yan, Solid State Commun. 149, 387 (2009).CrossRefGoogle Scholar
  38. 38.
    L. Adamowicz and M. Wierzbicki, Acta Phys. Pol. A 115, 217 (2009).Google Scholar
  39. 39.
    M. Naeem, S.K. Hasanain, and A. Mumtaz, J. Phys.: Condens. Matter 20, 025210 (2008).CrossRefGoogle Scholar
  40. 40.
    S. Sanvito, P. Ordejon, and N.A. Hill, Phys. Rev. B 63, 165206 (2001).CrossRefGoogle Scholar
  41. 41.
    C. Echeverria-Arrondo, J. Perez-Conde, and A. Ayuela, Phys. Rev. B 82, 205419 (2010).CrossRefGoogle Scholar
  42. 42.
    H. Raebiger, A. Ayuela, and R.M. Nieminen, J. Phys.: Condens. Matter 16, L457 (2004).CrossRefGoogle Scholar
  43. 43.
    T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).CrossRefGoogle Scholar
  44. 44.
    F. Glas, G. Patriarche, L. Largeau, and A. Lemaître, Phys. Rev. Lett. 93, 086107 (2004).CrossRefGoogle Scholar
  45. 45.
    K.M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J.K. Furdyna, Phys. Rev. B 65, 201303 (2002).CrossRefGoogle Scholar
  46. 46.
    J. Mašek, J. Kudrnovsky, and F. Maca, Phys. Rev. B 67, 153203 (2003).CrossRefGoogle Scholar
  47. 47.
    J. Sadowski and J.Z. Domagala, Phys. Rev. B 69, 075206 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • B. Amin
    • 1
  • S. Arif
    • 1
  • Iftikhar Ahmad
    • 1
  • M. Maqbool
    • 2
  • R. Ahmad
    • 3
  • S. Goumri-Said
    • 4
  • K. Prisbrey
    • 5
  1. 1.Materials Modeling Laboratory, Department of PhysicsHazara UniversityMansehraPakistan
  2. 2.Department of Physics and AstronomyBall State UniversityMuncieUSA
  3. 3.Department of ChemistryHazara UniversityMansehraPakistan
  4. 4.Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  5. 5.Department of MetallurgyUniversity of UtahSalt Lake CityUSA

Personalised recommendations