Journal of Electronic Materials

, Volume 40, Issue 5, pp 987–991

Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2

  • P. Poopanya
  • A. Yangthaisong
  • C. Rattanapun
  • A. Wichainchai


The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time (τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S(T) increases with increasing acceptor doping (Ad) level. The values of S(T) in our experiments correspond to an Ad level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10−16 s. The power factor is large for a low Ad level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.


Thermoelectric properties delafossite CuAlO2 first principles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Singh, Phys. Rev. B 77, 205126 (2008).CrossRefGoogle Scholar
  2. 2.
    A.N. Banerjee, R. Maity, P.K. Ghosh, and K.K. Chattopadhyay, Thin Solid Films 474, 261 (2005).CrossRefGoogle Scholar
  3. 3.
    G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  4. 4.
    K. Koumoto, H. Koduka, and W.S. Seo, J. Mater. Chem. 11, 251 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Yanagiya, N.V. Nong, J. Xu, and N. Pryds, Materials 3, 318 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Park, K.Y. Ko, H.-C. Kwon, and S. Nahm, J. Alloy Compd. 437, 1 (2007).CrossRefGoogle Scholar
  7. 7.
    G. Dong, M. Zhang, W. Lan, P. Dong, and H. Yan, Vacumm 82, 1321 (2008).CrossRefGoogle Scholar
  8. 8.
    B. Falabretti and J. Robertson, J. Appl. Phys. 102, 123703 (2007).CrossRefGoogle Scholar
  9. 9.
    M.V. Lalic, J. Mestnik-Filho, A.W. Carbonari, R.N. Saxena, and M.J. Moralles, J. Phys. Condens. Matter. 14, 5517 (2002).CrossRefGoogle Scholar
  10. 10.
    M.V. Lalic, J. Mestnik-Filho, A.W. Carbonari, and R.N. Saxena, Solid State Commun. 125, 175 (2003).CrossRefGoogle Scholar
  11. 11.
    M.V. Lalic and J. Mestnik-Filho, J. Phys. Condens. Matter. 18, 1619 (2006).CrossRefGoogle Scholar
  12. 12.
    T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem. 40, 170 (1981).CrossRefGoogle Scholar
  13. 13.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 567, 220 (2005).Google Scholar
  14. 14.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  15. 15.
    F. Birch, J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
  16. 16.
    I. Hamada and H. Katayama-Yoshida, Phys. B 376–377, 808 (2006).CrossRefGoogle Scholar
  17. 17.
    L.J. Shi, Z.J. Fang, and J. Li, J. Appl. Phys. 104, 073527 (2008).CrossRefGoogle Scholar
  18. 18.
    Q.J. Liu, Z.T. Liu, and L.P. Feng, Phys. B 405, 2028 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Nie, S.H. Wei, and S.B. Zhang, Phys. Rev. Lett. 88, 066405 (2002).CrossRefGoogle Scholar
  20. 20.
    J. Robertson, K. Xiong, and S.J. Clark, Thin Solid Films 496, 1 (2006).CrossRefGoogle Scholar
  21. 21.
    Th Dittrich, L. Dloczik, T. Guminskaya, and MCh Lux-Steiner, Appl. Phys. Lett. 85, 724 (2004).CrossRefGoogle Scholar
  22. 22.
    D.S. Kim, S.J. Park, E.K. Jeong, H.K. Lee, and S.Y. Choi, Thin Solid Films 515, 5103 (2007).CrossRefGoogle Scholar
  23. 23.
    F. Aryasetiawany and O. Gunnarssonz, Rep. Prog. Phys. 61, 237 (1998).CrossRefGoogle Scholar
  24. 24.
    R. Dovesi, R. Orlando, C. Roetti, C. Pisani, and V.R. Saunders, Phys. Stat. Sol. (b) 217, 63 (2000).CrossRefGoogle Scholar
  25. 25.
    V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
  26. 26.
    B.M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).CrossRefGoogle Scholar
  27. 27.
    P.P. Rushton, J.T. David, and S.J. Clark, Phys. Rev. B 65, 235203 (2002).CrossRefGoogle Scholar
  28. 28.
    D.O. Scanlon, A. Walsh, B.J. Morgan, and G.W. Watson, Phys. Rev. B 79, 035101 (2009).CrossRefGoogle Scholar
  29. 29.
    C.M. Bhandari and D.W. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).Google Scholar
  30. 30.
    S. Lee and P. von Allmen, Appl. Phys. Lett. 88, 022107 (2006).CrossRefGoogle Scholar
  31. 31.
    P. Pichanusakorn and P.R. Bandaru, Appl. Phys. Lett 94, 223108 (2009).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • P. Poopanya
    • 1
  • A. Yangthaisong
    • 1
  • C. Rattanapun
    • 2
  • A. Wichainchai
    • 2
  1. 1.Computational Materials and Device Physics Group, Department of PhysicsUbon Ratchathani UniversityUbon RatchathaniThailand
  2. 2.Department of Applied Physics, Faculty of Science, King Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations