Journal of Electronic Materials

, Volume 40, Issue 5, pp 529–532 | Cite as

Temperature Distribution in Two-Dimensional Electron Gases under a Strong Magnetic Field

  • Naomi Hirayama
  • Akira Endo
  • Kazuhiro Fujita
  • Yasuhiro Hasegawa
  • Naomichi Hatano
  • Hiroaki Nakamura
  • Ryōen Shirasaki
  • Kenji Yonemitsu
Article

Abstract

Two-dimensional electron gases having an electrochemical potential gradient under a magnetic field are numerically examined using the finite-difference method. The temperature, voltage, electric current, and heat flux are calculated from transport equations describing thermoelectric and thermomagnetic effects, namely the Hall, Nernst, Ettingshausen, and Righi–Leduc effects. The results show that a magnetic field distorts equipotential lines and generates an uneven temperature distribution. In particular, a part of the system is found to become colder than the temperature of the heat baths. The cooling effect under a strong magnetic field is due primarily to the Ettingshausen and Hall effects.

Keywords

Thermoelectric power thermomagnetic effect Ettingshausen effect two-dimensional electron gas quantum Hall system finite-difference method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Fletcher, Semicond. Sci. Technol. 14, R1 (1999).CrossRefGoogle Scholar
  2. 2.
    B.L. Gallagher and P.N. Butcher, Handbook on Semiconductors vol. 1, ed. P.T. Landsberg (Amsterdam, Elsevier, 1992), p.␣817.Google Scholar
  3. 3.
    V. Bayot, E. Grivei, H.C. Manoharan, X. Ying, and M. Shayegan, Phys. Rev. B 52, R8621 (1995).CrossRefGoogle Scholar
  4. 4.
    W.E. Chickering, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 81, 245319 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Behnia, M.-A. Méasson, and Y. Kopelevich, Phys. Rev. Lett. 166602 (2007)Google Scholar
  6. 6.
    K. Fujita, A. Endo, S. Katsumoto, and Y. Iye, Physica E 42, 1030 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, and R. Shirasaki, to appear in Comp. Phys. Commun. (2010). doi:10.1016/j.cpc.2010.07.043
  8. 8.
    H. Okumura, S. Yamaguchi, H. Nakamura, K. Ikeda, and K. Sawada, Proceedings of ICT98: 17th International Conference on Thermoelectrics (Piscataway: IEEE, 1998), p.␣89.Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Naomi Hirayama
    • 1
  • Akira Endo
    • 2
  • Kazuhiro Fujita
    • 2
  • Yasuhiro Hasegawa
    • 3
  • Naomichi Hatano
    • 1
  • Hiroaki Nakamura
    • 4
  • Ryōen Shirasaki
    • 5
  • Kenji Yonemitsu
    • 6
  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyoJapan
  2. 2.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan
  3. 3.Department of Environmental Science and TechnologySaitama UniversitySaitama CityJapan
  4. 4.Fundamental Physics Simulation Research DivisionNational Institute for Fusion ScienceTokiJapan
  5. 5.Department of PhysicsYokohama National UniversityYokohamaJapan
  6. 6.Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan

Personalised recommendations