Journal of Electronic Materials

, Volume 40, Issue 5, pp 523–528 | Cite as

Numerical Study of Effects of Scattering Processes on Transport Properties of Bi Nanowires

  • Yuki Ichige
  • Tsuyoshi Matsumoto
  • Takashi Komine
  • Ryuji Sugita
  • Tomosuke Aono
  • Masayuki Murata
  • Daiki Nakamura
  • Yasuhiro Hasegawa
Article

In this study, we investigated the effects of scattering on the transport properties of Bi nanowires. The electrical conductivities and Seebeck coefficients of Bi nanowires were calculated using the Boltzmann equation, with an energy-dependent relaxation time corresponding to the scattering process. Decreasing the wire diameter increased the Seebeck coefficient for all of the scattering processes examined, because a semimetal–semiconductor transition occurred. In 80-nm-diameter nanowires, the Seebeck coefficient for ionized impurity scattering was larger than that of the acoustic deformation potential. On the other hand, in 20-nm-diameter nanowires, the dependence of the Seebeck coefficient on the scattering process was negligible, compared with the influence of wire diameter.

Keywords

Bi nanowire scattering process transport properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  2. 2.
    Y.M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, and H. Shirai, Jpn. J. Appl. Phys. 43, 35 (2004).CrossRefGoogle Scholar
  6. 6.
    R.T. Isaacson and G.A. Williams, Phys. Rev. 185, 682 (1969).CrossRefGoogle Scholar
  7. 7.
    B. Lax, J.G. Mavroides, H.J. Zeiger, and R.J. Keyes, Phys. Rev. Lett. 5, 241 (1960).CrossRefGoogle Scholar
  8. 8.
    J. Heremans and O.P. Hansen, J. Phys. C 12, 3483 (1979).CrossRefGoogle Scholar
  9. 9.
    M.P. Vecchi and H.D. Drew, Phys. Rev. B 10, 771 (1974).CrossRefGoogle Scholar
  10. 10.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Berlin: Springer, 2001).Google Scholar
  11. 11.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  12. 12.
    C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
  13. 13.
    K. Seeger, Semiconductor Physics: An Introduction (Heidelberg: Springer-Verlag, 1989).Google Scholar
  14. 14.
    H.R. Verdun and H.D. Drew, Phys. Rev. Lett. 33, 1608 (1974).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Yuki Ichige
    • 1
  • Tsuyoshi Matsumoto
    • 1
  • Takashi Komine
    • 1
  • Ryuji Sugita
    • 1
  • Tomosuke Aono
    • 1
  • Masayuki Murata
    • 2
  • Daiki Nakamura
    • 2
  • Yasuhiro Hasegawa
    • 2
  1. 1.Faculty of EngineeringIbaraki UniversityHitachiJapan
  2. 2.Faculty of EngineeringSaitama UniversitySakura-ku, SaitamaJapan

Personalised recommendations