Advertisement

Journal of Electronic Materials

, Volume 40, Issue 5, pp 1260–1265 | Cite as

Numerical Study of Effect of Surface Potential on Transport Properties of Bi Nanowires

  • Tsuyoshi Matsumoto
  • Yuki Ichige
  • Takashi Komine
  • Ryuji Sugita
  • Tomosuke Aono
  • Masayuki Murata
  • Daiki Nakamura
  • Yasuhiro Hasegawa
Article

We numerically investigated the effect of the surface on the transport properties of Bi nanowires. The effect of the surface was modeled using the surface potential. The energy shift in each band due to the surface potential was calculated by a perturbation method. The effect of the surface potential on the transport properties was estimated using the Boltzmann equation with a constant relaxation time. The results reveal that the surface potential dramatically alters the density of states of T-point holes, whereas it has very little effect on the density of states of L-point holes. This is because the wavefunctions at the L- and T-points have different symmetries. The electrical conductivity increases and the Seebeck coefficient decreases with increasing surface potential. The maximum absolute value of the Seebeck coefficient decreases drastically with increasing surface potential. The Seebeck coefficient has a much stronger dependence on the surface potential than on the wire diameter. These results demonstrate that the transport properties of Bi nanowires are very sensitive to the surface potential.

Keywords

Bi nanowire effect of surface surface potential transport property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  2. 2.
    S.B. Cronin, Y.M. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J.P. Minet, and J.P. Issi, Nanotechnology 13, 653 (2002).CrossRefGoogle Scholar
  3. 3.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (New York: Holt, Rinehart and Winston, 1976).Google Scholar
  4. 4.
    J. Heremans and O.P. Hansen, J. Phys. C 12, 3483 (1979).CrossRefGoogle Scholar
  5. 5.
    R.T. Isaacson and G.A. Williams, Phys. Rev. 185, 682 (1969).CrossRefGoogle Scholar
  6. 6.
    M.P. Vecchi and M.S. Dresselhaus, Phys. Rev. B 10, 771 (1974).CrossRefGoogle Scholar
  7. 7.
    C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
  8. 8.
    B. Lax, J.G. Mavroides, H.J. Zeiger, and R.J. Keyes, Phys. Rev. Lett. 5, 241 (1960).CrossRefGoogle Scholar
  9. 9.
    X. Sun, Z. Zhang, and M.S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999).CrossRefGoogle Scholar
  10. 10.
    T. Koga, T.C. Harman, S.B. Cronin, and M.S. Dresselhaus, Phys. Rev. B 60, 14286 (1999).CrossRefGoogle Scholar
  11. 11.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Wiley, 2005).Google Scholar
  13. 13.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Tsuyoshi Matsumoto
    • 1
  • Yuki Ichige
    • 1
  • Takashi Komine
    • 1
  • Ryuji Sugita
    • 1
  • Tomosuke Aono
    • 1
  • Masayuki Murata
    • 2
  • Daiki Nakamura
    • 2
  • Yasuhiro Hasegawa
    • 2
  1. 1.Faculty of EngineeringIbaraki UniversityHitachiJapan
  2. 2.Faculty of EngineeringSaitama UniversitySaitamaJapan

Personalised recommendations