Journal of Electronic Materials

, Volume 40, Issue 1, pp 42–50 | Cite as

Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics

Article

Abstract

Most commercial copper nanoparticles are covered with an oxide shell and cannot be sintered into conducting lines/films by conventional thermal sintering. To address this issue, past efforts have utilized complex reduction schemes and sophisticated chambers to prevent oxidation, thereby rendering the process cost ineffective. To alleviate these problems, we demonstrate a reactive sintering process using intense pulsed light (IPL) in the present study. The IPL process successfully removed the oxide shells of copper nanoparticles, leaving a conductive, pure copper film in a short period of time (2 ms) under ambient conditions. The in situ copper oxide reduction mechanism was studied using several different experiments and analyses. We observed instant copper oxide reduction and sintering through poly(N-vinylpyrrolidone) functionalization of copper nanoparticles, followed by IPL irradiation. This phenomenon may be explained by oxide reduction either via an intermediate acid created by ultraviolet (UV) light irradiation or by hydroxyl (-OH) end groups, which act like long-chain alcohol reductants.

Keywords

Intense pulsed light reactive sintering copper oxide printed electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tatasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, Wear 252, 63 (2002).CrossRefGoogle Scholar
  2. 2.
    Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000).CrossRefGoogle Scholar
  3. 3.
    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001).CrossRefGoogle Scholar
  4. 4.
    A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman, J. Nanoparticle Res. 3, 385 (2001).CrossRefGoogle Scholar
  5. 5.
    Y.I. Lee, J.R. Choi, K.J. Lee, N.E. Stott, and D.H. Kim, Nanotechnology 19, 415 (2008).Google Scholar
  6. 6.
    M. Berggren, D. Nilsson, and D. Robinson, Nat. Mater. 6, 3 (2007).CrossRefGoogle Scholar
  7. 7.
    S.H. Jeong, K.H. Woo, D.J. Kim, S.K. Lim, J.S. Kim, H.S. Shin, Y.N. Xia, and J.H. Moon, Adv. Funct. Mater. 18, 679 (2008).CrossRefGoogle Scholar
  8. 8.
    B.K. Park, D.J. Kim, S.H. Jeong, J.H. Moon, and J.S. Kim, Thin Solid Films 151, 7706 (2007).CrossRefGoogle Scholar
  9. 9.
    M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, and C.S. Yeh, J. Phys. Chem. B 103, 6851 (1999).CrossRefGoogle Scholar
  10. 10.
    L. Qi, J. Ma, and J. Shen, J. Colloid Interface Sci. 186, 498 (1997).CrossRefGoogle Scholar
  11. 11.
    V. Subramanian, P. Chang, D. Huang, J. Lee, S. Molesa, D. Redinger, and S. Volkman, VLSI Design in the 5th International Conference on Embedded Systems and Design (2006), p. 6.Google Scholar
  12. 12.
    S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, M.J. Frechet, and D. Poulikakos, Appl. Phys. Lett. 90, 141103 (2007).CrossRefGoogle Scholar
  13. 13.
    S.H. Kim, S.R. Dhage, D.E. Shim, and H.T. Hahn, Appl. Phys. A 97, 791–798 (2009).CrossRefGoogle Scholar
  14. 14.
    H.S. Kim and H.T. Hahn, UCLA Case No. 2009-644.Google Scholar
  15. 15.
  16. 16.
    P. Liu, T.F. Li, and C. Fu, Mater. Sci. Eng. A 268, 208 (1999).CrossRefGoogle Scholar
  17. 17.
    H. Ohde, F. Hunt, and C.M. Wai, Chem. Mater. 13, 4130 (2001).CrossRefGoogle Scholar
  18. 18.
    M.A. Moharram and M.G. Khafagi, J. Appl. Polym. Sci. 105, 1888 (2007).CrossRefGoogle Scholar
  19. 19.
    H. Hakkinen and U. Landman, Phys. Rev. Lett. 71, 1023 (1993).CrossRefGoogle Scholar
  20. 20.
    C.M. Pitsillides, E.K. Joe, X. Wei, R.R. Anderson, and C.P. Lin, Biophys. J. 84, 4023 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Pike, S.W. Chan, F. Zhang, X. Wang, and J. Hanson, Appl. Catal. A 303, 273 (2006).CrossRefGoogle Scholar
  22. 22.
    F.P. Incropera and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th ed. (New York: Wiley, 2002).Google Scholar
  23. 23.
    H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh, and S.H. Tang, Langmuir 13, 172 (1997).CrossRefGoogle Scholar
  24. 24.
    P. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
  25. 25.
    Strem Chemicals, Catalog 418 (18), Newburyport, MA, (1999).Google Scholar
  26. 26.
    S. Horikoshi, H. Hidaka, and N. Serpone, J. Photochem. Photobiol. A 138, 69 (2001).CrossRefGoogle Scholar
  27. 27.
    H. Gil, A. Echavarria, and F. Echeverria, Electrochim. Acta 54, 4676 (2009).CrossRefGoogle Scholar
  28. 28.
    P.J. Soininen, K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, and S. Haukkaa, J. Electrochem. Soc. 152, G122 (2005).CrossRefGoogle Scholar
  29. 29.
    J.H. Lee, D.K. Kim, and W.K. Kang, Bull. Korean Chem. Soc. 27, 1869 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Xiong, I. Washio, J.Y. Chen, H.G. Cai, Z.Y. Li, and Y.N. Xia, Langmuir 22, 8563 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea
  3. 3.Korea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations