Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 1386–1389 | Cite as

Physical Properties of Single-Crystalline Ba8Ni3.5Ge42.10.4

  • L. T. K. NguyenEmail author
  • U. Aydemir
  • M. Baitinger
  • J. Custers
  • A. Haghighirad
  • R. Höfler
  • K. D. Luther
  • F. Ritter
  • Yu. Grin
  • W. Assmus
  • S. Paschen
Open Access
Article

Abstract

Clathrates are candidate materials for thermoelectric applications because of a number of unique properties. The clathrate I phases in the Ba-Ni-Ge ternary system allow controlled variation of the charge carrier concentration by adjusting the Ni content. Depending on the Ni content, the physical properties vary from metal-like to insulator-like and show a transition from p-type to n-type conduction. Here we present first results on the characterization of millimeter-sized single crystals grown by the Bridgman technique. Single crystals with a composition of Ba8Ni3.5Ge42.10.4 show metallic behavior (dρ/dT > 0) albeit with high resistivity at room temperature [ρ (300 K) = 1 mΩ cm]. The charge carrier concentration at 300 K, as determined from Hall-effect measurements, is 2.3 e/unit cell. The dimensionless thermoelectric figure of merit estimated at 680 K is ZT ≈ 0.2.

Keywords

Clathrates thermoelectric material intermetallic compound nickel 

Notes

Acknowledgement

Financial support from the EU FP6 NoE Complex Metallic Alloys is gratefully acknowledged.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).CrossRefADSGoogle Scholar
  2. 2.
    M. Christensen, A. Abrahamsen, N. Christensen, F. Juranyi, N. Andersen, K. Lefmann, J. Andreasson, C. Bahl, and B. Iversen, Nature Mater. 7, 811 (2008).CrossRefADSPubMedGoogle Scholar
  3. 3.
    M. Baitinger, U. Aydemir, B. Böhme, H. Borrmann U. Burkhardt, W. Carrillo-Cabrera, A. Guloy, F. Haarmann, W. Jung, K. Kovnir, L.N.T. Kim, R. Ramlau, W. Schnelle, U. Schwarz, A. Shevelkov, Z. Tang, J. Vezemchuk, J. Zaikina, and Yu. Grin, In Scientific Report 2006/2008 (Max Planck Institute for Chemical Physics of Solids, Dresden, 2009), p. 134.Google Scholar
  4. 4.
    S. Johnsen, A. Bentien, G.K.H. Madsen, M. Nygren, and B.B. Iversen, Phys. Rev. B 76, 245126 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. Bentien, S. Johsen, and B.B. Iversen, Phys. Rev. B 73, 094301 (2006).CrossRefADSGoogle Scholar
  6. 6.
  7. 7.
    L.G. Akselrud, P.Y. Zavalli, Yu. Grin, V.K. Pecharsky, B. Baumgartner, and E. Wölfel, Mater. Sci. Forum 335, 133 (1993).Google Scholar
  8. 8.
    G. Cordier and P. Woll, J. Less-Common Met. 169, 291 (1991).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, J.T. Zhao, M.B. Tang, Z.Y. Man, H.H. Chen, and X.X. Yang, J. Phys. Chem. Solids 70, 312 (2009).CrossRefADSGoogle Scholar
  10. 10.
    N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, J. Appl. Phys. 101, 113525 (2007).CrossRefADSGoogle Scholar
  11. 11.
    L. Qui, I.P. Swainson, G.S. Nolas, and M.A. White, Phys. Rev. B 70, 035208 (2004).CrossRefADSGoogle Scholar
  12. 12.
    N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, J. Appl. Phys. 100, 073504 (2006).CrossRefADSGoogle Scholar
  13. 13.
    A. Bentien, V. Pacheco, S. Paschen, Yu. Grin, and F. Steglich, Phys. Rev. B 71, 165205 (2005).CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • L. T. K. Nguyen
    • 1
    • 2
    • 3
    Email author
  • U. Aydemir
    • 3
  • M. Baitinger
    • 3
  • J. Custers
    • 1
  • A. Haghighirad
    • 2
  • R. Höfler
    • 1
  • K. D. Luther
    • 2
  • F. Ritter
    • 2
  • Yu. Grin
    • 3
  • W. Assmus
    • 2
  • S. Paschen
    • 1
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Institute of PhysicsGoethe-University Frankfurt am MainFrankfurt am MainGermany
  3. 3.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations