Advertisement

Journal of Electronic Materials

, Volume 39, Issue 10, pp 2332–2336 | Cite as

Improved Synthesis of Superconducting Carbon-Doped MgB2 Using a Biopolymer for Simultaneous Crystallite Size Control and Chemical Reduction

  • Simon R. Hall
  • Jemima L. F. Howells
  • Stuart C. Wimbush
Article

Abstract

This study represents a key evolution in the synthesis of the superconductor MgB2, as it is the first to demonstrate that templated synthesis can be carried out successfully without a sealed reaction vessel. This is possible owing to the strong chelating ability of the biopolymer dextran, whose morphological complexity effectively cocoons the reaction, preventing oxygen ingress. This synthetic protocol demonstrates that not only can this important material be synthesized as nanoparticles but that, as the morphological template is calcined, it effectively carbon-dopes the superconducting phase, thereby improving the critical current density by a factor of five.

Keywords

Superconductor biopolymer MgB2 templated growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the Royal Society and the UK Engineering and Physical Sciences Research Council for financial support enabling this work. S.C.W. is supported by a Fellowship from The Leverhulme Trust with subsidiary funding from The Isaac Newton Trust.

References

  1. 1.
    E. Yablonovitch, J. Mod. Opt. 41, 173 (1994).CrossRefADSGoogle Scholar
  2. 2.
    S. Polarz and B.J. Smarsly, J. Nanosci. Nanotech. 2, 581 (2002).CrossRefGoogle Scholar
  3. 3.
    T. Trindade, P. O’Brien, and N.L. Pickett, Chem. Mater. 13, 3843 (2001).CrossRefGoogle Scholar
  4. 4.
    S.R. Hall, Adv. Mater. 18, 487 (2006).CrossRefGoogle Scholar
  5. 5.
    Z.A.C. Schnepp, S.C. Wimbush, S. Mann, and S.R. Hall, Adv. Mater. 20, 1782 (2008).CrossRefGoogle Scholar
  6. 6.
    D. Walsh, S.C. Wimbush, and S.R. Hall, Chem. Mater. 19, 647 (2007).CrossRefGoogle Scholar
  7. 7.
    S.K. Gupta, S. Sen, D.K. Aswal, I.K. Gopalakrishnan, J.V. Yakhmi, V.C. Sahni, E.M. Choi, K.H.P. Kim, H.S. Lee, H.J. Kim, W.N. Kang, and S.I. Lee, Physica C 385, 313 (2003).CrossRefADSGoogle Scholar
  8. 8.
    H. Kitaguchi, A. Matsumoto, H. Kumakura, T. Doi, H. Yamamoto, K. Saitoh, H. Sosiati, and S. Hata, Appl. Phys. Lett. 85, 2842 (2004).CrossRefADSGoogle Scholar
  9. 9.
    X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, S.Y. Xu, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, and Z.K. Liu, Nat. Mater. 1, 35 (2002).CrossRefADSPubMedGoogle Scholar
  10. 10.
    H.L. Suo, C. Beneduce, X.D. Su, and R. Flukiger, Supercond. Sci. Tech. 15, 1058 (2002).CrossRefADSGoogle Scholar
  11. 11.
    M. Kiuchi, K. Yamauchi, T. Kurokawa, E.S. Otabe, T. Matsushita, M. Okada, K. Tanaka, H. Kumakura, and H. Kitaguchi, Physica C 412–414, 1189 (2004).CrossRefGoogle Scholar
  12. 12.
    Y.Y. Wu, B. Messer, and P.D. Yang, Adv. Mater. 13, 1487 (2001).CrossRefGoogle Scholar
  13. 13.
    C. Chen, Z. Zhou, X. Li, J. Xu, Y. Wang, Z. Gao, and Q. Feng, Solid State Commun. 131, 275 (2004).CrossRefADSGoogle Scholar
  14. 14.
    X.X. Xi, X.H. Zeng, A.V. Pogrebnyakov, S.Y. Xu, Q. Li, Y. Zhong, C.O. Brubaker, Z.K. Liu, E.M. Lysczek, J.M. Redwing, J. Lettieri, D.G. Schlom, W. Tian, and X.Q. Pan, IEEE Trans. Appl. Supercond. 13, 3233 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii, and K. Kishio, Physica C 445, 806 (2006).CrossRefADSGoogle Scholar
  16. 16.
    J. Shimoyama, K. Hanafusa, A. Yamamoto, Y. Katsura, S. Horii, K. Kishio, and H. Kumakura, Supercond. Sci. Tech. 20, 307 (2007).CrossRefADSGoogle Scholar
  17. 17.
    Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M. Polichetti, T.J. Tate, R. Gwilliam, and A.D. Caplin, Nature 411, 561 (2001).CrossRefADSPubMedGoogle Scholar
  18. 18.
    D. Larbalestier, A. Gurevich, D.M. Feldmann, and A. Polyanskii, Nature 414, 368 (2001).CrossRefADSPubMedGoogle Scholar
  19. 19.
    S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, and S. Tajima, Physica C 412–414, 31 (2004).CrossRefGoogle Scholar
  20. 20.
    Y. Katsura, A. Yamamoto, S. Ueda, I. Iwayama, S. Horii, J. Shimoyama, and K. Kishio, Physica C 460, 572 (2007).CrossRefADSGoogle Scholar
  21. 21.
    S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, and S. Tajima, Physica C 397, 7 (2003).CrossRefADSGoogle Scholar
  22. 22.
    C. Buzea and T. Yamashita, Supercond. Sci. Tech. 14, R115 (2001).CrossRefADSGoogle Scholar
  23. 23.
    S. Tajima, I. Mazin, D. van der Marel, and H. Kumakura, Physica C 456, 1 (2007).CrossRefADSGoogle Scholar
  24. 24.
    P. Lezza, C. Senatore, and R. Flukiger, Supercond. Sci. Tech. 19, 1030 (2006).CrossRefADSGoogle Scholar
  25. 25.
    S. Zhou, A.V. Pan, D. Wexler, and S.X. Dou, Adv. Mater. 19, 1373 (2007).CrossRefGoogle Scholar
  26. 26.
    D.K. Aswal, S. Sen, A. Singh, T.V.C. Rao, J.C. Vyas, L.C. Gupta, S.K. Gupta, and V.C. Sahni, Physica C 363, 149 (2001).CrossRefADSGoogle Scholar
  27. 27.
    D. Mijatovic, A. Brinkman, I. Oomen, D. Veldhuis, G. Rijnders, H. Hilgenkamp, H. Rogalla, and D.H.A. Blank, IEEE Trans. Appl. Supercond. 13, 3245 (2003).Google Scholar
  28. 28.
    P.C. Canfield, D.K. Finnemore, S.L. Bud’ko, J.F. Ostenson, G. Lapertot, C.E. Cunningham, and C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001).CrossRefADSPubMedGoogle Scholar
  29. 29.
    C. Dong, J. Guo, G.C. Fu, L.H. Yang, and H. Chen, Supercond. Sci. Tech. 17, L55 (2004).CrossRefADSGoogle Scholar
  30. 30.
    M. Paranthaman, J.R. Thompson, and D.K. Christen, Physica C 355, 1 (2001).CrossRefADSGoogle Scholar
  31. 31.
    S.M. Kazakov, R. Puzniak, K. Rogack, A.V. Mironov, N.D. Zhigadlo, J. Jun, C. Soltmann, B. Batlogg, and J. Karpinski, Phys. Rev. B 71, 024533 (2005).CrossRefADSGoogle Scholar
  32. 32.
    M. Nath and B.A. Parkinson, Adv. Mater. 18, 1865 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Simon R. Hall
    • 1
  • Jemima L. F. Howells
    • 1
  • Stuart C. Wimbush
    • 2
  1. 1.Centre for Organized Matter Chemistry, School of ChemistryUniversity of BristolBristolUK
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations